Time v/s Throughput ### Time to complete task: • execution time, response time, latency ### Tasks per unit time: • throughput, bandwidth | Carrier | Latency | Throughput | | | |--------------|---------|----------------|--|--| | Driving Home | 15 mins | 1092M bits/sec | | | | Cable Modem | 30 ms | <1M bits/sec | | | (Carry 10 12GB tapes... you can take more!) ### Performance Performance measured as the inverse of execution time. $$Performance_X = \frac{1}{Execution \ time_X}$$ X is N times faster than Y: $$\frac{Performance_X}{Performance_Y} = \frac{Execution \ time_Y}{Execution \ time_X} = N$$ ## Measuring Time ### Elapsed time, wall-clock time: - Actual time from start to completion of task - Depends on CPU, disk, operating system (05) - Affected when multiple users share a system #### CPU time: - Only look at CPU performance - Suitable if multiple users running simultaneously - Possible to measure 05 component When times are accurately accounted for, elapsed time is CPU time + Idle time. ### Performance Metrics ### Different metrics appropriate at different levels - Application - Answers per month, operations per second - Compiler - millions of instructions per second (MIPS) - millions of floating-point ops per second (MFLOPS) - CPU Organization - cycles per instruction - FSM, implementation - cycles per second (clock rate) ## Relating Different Levels - Application: time for one operation \Rightarrow 1 operation - Compiler: expands operation into number of instructions - $\Rightarrow N$ instructions - CPU Organization: each instruction takes some number of cycles. $$\Rightarrow N \times CPI$$ cycles CPI: average number of cycles per instruction for instruction mix • FSM, implementation: clock period $$\Rightarrow N \times CPI \times seconds/cycle$$ seconds # Cycles Per Instruction (CPI) CPI is the average clock cycles per instruction Different instructions might take different number of cycles! \Rightarrow look at instruction mix (frequency of different instruction types) If p_i is the probability of instruction type i, and CPI_i is the cycles taken by an instruction of type i: $$CPI = \sum_{i=1}^{n} p_i \times CPI_i$$ ## Example CPI Calculation ## Simple ISA with four types of instructions: | Instr. | Frequency | Cycles | Contribution | %Time | |--------|-----------|---------|--------------------|-------| | Type | p_i | CPI_i | $p_i \times CPI_i$ | taken | | ALU | 50% | 1 | 0.5 | 33% | | Load | 20% | 2 | 0.4 | 27% | | Store | 10% | 2 | 0.2 | 13% | | Branch | 20% | 2 | 0.4 | 27% | Total CPI: 1.5 Loads take up 0.4/1.5 = 0.27 = 27% of total time. ### Which Machine Is Faster? Given the following instruction mix and cycle counts: | Туре | Frequency | Cycles | CPI Contribution | |--------|-----------|--------|------------------| | Load | 30% | 2 | 0.6 | | Store | 15% | 2 | 0.3 | | Branch | 15% | 2 | 0.3 | | ALU | 40% | 1 | 0.4 | Total CPI: 1.6 Adding an ALU operation with one memory operand: - ullet Clock cycle period 1.25 imes original period - Half the loads + corresponding ALU ops replaced - New operation takes 2 cycles ### Solution 1: Find New IC, CPI, CC ### New Instruction Count (IC): $$IC_{new} = IC - \text{instr replaced} + \text{instr added}$$ = $IC - (0.5 \times 30\% \times 2)IC + (0.5 \times 30\%)IC$ = $0.85 \times IC$ #### New CPI: we have a new instruction mix! | Туре | Frequency | Cycles | CPI Contribution | | |-----------------------|-----------|--------|------------------|--| | Load | 15 | 2 | 0.3 | | | Store 15
Branch 15 | | 2 | 0.3 | | | | | 2 | 0.3 | | | ALU | 25 | 1 | 0.25 | | | ALU Mem | 15 | 2 | 0.3 | | ### Solution 1: Find New IC, CPI, CC Totals: 85 (Freq. column), 1.45 (CPI contribution) $$\Rightarrow CPI_{new} = 1.45/0.85 = 1.7 = (1.7/1.6)CPI$$ Also, new clock cycle time: $$CC_{new} = 1.25 \times CC$$ Therefore, execution time: Execution Time_{new} = $$IC_{new} \times CPI_{new} \times CC_{new}$$ = $(0.85 \times IC) \times ((1.7/1.6) \times CPI)$ $\times (1.25 \times CC)$ = $1.13 \times (IC \times CPI \times CC)$ = $1.13 \times \text{Execution Time}$ # Solution 2: Compute CPU Cycles $$Cycles = IC \times CPI = 1.6 \times IC$$ $$Cycles_{new} = Cycles -$$ saved $+$ added $$saved = loads saved + alu saved$$ = $$(30\% \times 0.5 \times 2 + 30\% \times 0.5 \times 1) \times IC$$ $$= 0.45 \times IC$$ $$= (30\% \times 0.5 \times 2) \times IC$$ $$= 0.3 \times IC$$ $$Cycles_{new} = 1.6 \times IC - 0.45 \times IC + 0.3 \times IC$$ = $1.45 \times IC$ ## Solution 2: Compute CPU Cycles #### Therefore, execution time: Execution Time_{new} = $$Cycles_{new} \times CC_{new}$$ = $(1.45 \times IC) \times (1.25 \times CC)$ = $1.81 \times (IC \times CC)$ Execution Time = $$IC \times CPI \times CC$$ = $1.6 \times (IC \times CC)$ \Rightarrow original machine is 1.13 times faster. # Solution 3: "100 typical instructions" Load Store Branch ALU ALU Mem Total | | Original | | | New | | |-----------|----------|-------|-------|-------|------------| | cycles | instr | cycle | instr | instr | cycle | | per instr | count | count | delta | count | count | | 2 | 30 | 60 | -15 | 15 | 3 <i>0</i> | | 2 | 15 | 30 | | 15 | 3 <i>0</i> | | 2 | 15 | 30 | | 15 | 30 | | 1 | 40 | 40 | -15 | 25 | 25 | | 2 | 0 | 0 | +15 | 15 | 30 | | | 100 | 160 | | 85 | 145 | Original time: 160 cycles \times CC New time: 145 cycles \times (1.25 \times CC) \Rightarrow original machine is 1.13 times faster.