
Operating Systems

The program that runs most of the time

The user/system interface

The reason you need a new computer every 18
months :-)



Operating System Features

• Process Management

• Loader
• System Calls

• Exception Handling

• Concurrency Control
• Memory Management

• File Systems

• Disk Scheduling
• Networking



Process Management

Program is a passive entity, stored on disk

Process is active, a program in execution

• associates a program counter with program

• creates process control block

Can be in 3 states:

• ready, running, waiting

Multiple processes execute concurrently
some user, some system

Context switch between processes



Process Scheduling

Batch jobs use shortest job �rst
minimizes average response time

Interactive Jobs

• use round robin policy

• needs a time slice or quantum

• add priorities (multiple queues)

Relevant Unix commands

• ps, top, renice

• kill -STOP, kill -CONT, kill -KILL



Shells and Loading

Shell is a user process owned by you

When you run a program shell calls fork

• child calls exec to run program

• returns exit code to parent

• parent calls wait for child to exit

OS preloads �rst few pages into memory

• others on demand (demand paging)

Creates new page table with mappings



System Calls

How you do all the cool stuff

Example MIPS syscall functions:

• fork, read, write, open, close

• create, chdir, mount

• send, recv

Pass arguments in registers

Enters kernel mode, returns to user mode



What Happens on a printf?

printf is a user-level library call
lives in libc, automaticaly linked

Creates the �nal string to print

Calls the write syscall

• transition to kernel mode

• uncached writes to the memory-mapped console

• characters appear on the screen

syscall puts return value in r2



Exception Handling

Using only reserved kernel registers, save state of
running process

• save EPC (and possibly branch PC)

• save register �le to process control block

• dispatch speci�c handler based on cause

Can you take an exception in an exception handler?

• sometimes, OS must be careful

• maskable interrupts: lower priority

• non-maskable interrupts



Concurrency Control

OS manages shared resources
e.g. access to a printer, shared �le

OS has many critical sections

Protect critical sections with:

• locks (mutexes)

• semaphores

• monitors

Avoid deadlock

• acquire resources in same order

• e.g. Dining Philosophers



Memory Management

Support page-based virtual memory systems

• protection, relocation, resource sharing

• tlb re�ll code
• page fault handler

Keeps data structure for page replacement

Page replacement algorithms

• optimal is unrealizable

• clock algorithm, using R and M bits

Manage swap space



File Systems

Root directory kept in a �xed place

• Unix: inodes scattered throughout

• directories hold inode number/name

• inodes hold size/time/permission and 10 disk
block numbers

• big �les: pointers to other inodes

• huge �les: pointers to pointers, and pointers to
pointers to pointers

DOS/Windows: FATFile Allocation Table

• entry for every disk block
• entry holds next block of �le or EOF



Disk Scheduling

Problem: How to optimally schedule disk requests to
maximize throughput?

Alternatives

• shortest seek �rst
• minimize motion of r/w head

• elevator algorithm

File caching

• keep recently accessed �le data in memory

• problem: what do you do with writes?



Networking

OS implements the TCP and IP layers of the network
protocol

Gives applications a virtualized socket-based API to
the network

Can open sockets via syscall

• returns a �le descriptor

• read from and write to descriptor

Servers listen on sockets and accept connections

• server may fork or handle request itself


