
Memory Design

Memory can be built in different ways...

• Dynamic (DRAM): �leaky,� has to be refreshed

periodically

• Static (SRAM)

Memory access latency:

• DRAM: 50-70ns, larger memory size (can �t

more in a given area)

• SRAM: 3-10ns, smaller memory size

CPU clock cycle time: 0.5-2ns

Processor-Memory Gap

Current trends:

Component Capacity Speed

Transistors/logic 1.4x each year 2x in 3 years
DRAM 4x in 3 years 1.4x in 10 years
Disk 4x in 3 years 1.4x in 10 years

The gap between processor speed and memory
speed is growing.

CPI Equation

Suppose: 60ns DRAM, 500MHz CPU.

Instruction mix:
ALU: 50%, load/store: 30%, branch: 20%

Assume branch delay slots are all �lled with nops.

MIPS CPI:
0.5× 1 + 0.2× 2 + 0.3× 30

⇒ 9.9!

Problem: memory is too slow.

Speeding Up Memory Access

Basic idea:

• Build a small, fast memory (cache)

• Use to store frequently accessed blocks of
memory

• When it �lls up, discard some blocks and replace
them with others

• Works well if we are reusing data blocks

Examples: incrementing a variable, loops, function
calls, etc.

Locality Principles

Temporal Locality

• the location of a memory reference is likely to be
the same as another recent reference

• loops, function calls, etc (code)

• variables are reused in a program

Spatial Locality

• the location of a memory reference is likely to be
near another recent reference

• matrices, arrays

• stack accesses

Cache Access

Reading memory in the presence of a cache:

• Check if the address is present in the cache

• If present, return data from the cache (a cache

hit)

• If absent (a cache miss), read a block of data

from the main memory, store it in the cache, and

return data.

Why not repeat this since memory is slow?

Memory Hierarchy

???

registers

level 1 cache

level 2 cache

main memory

disk

tape

larger storage, bigger blocks, larger access tim
e

100−1000B

4KB−64KB

512KB−8MB

64MB−4GB

9GB−512GB

>1TB

load/store

cache miss

cache miss

page fault

compiler/programmer

hardware cache control

hardware cache control

operating system

tape robot/operator

0.5−2ns

2−4ns

5−20ns

50−120ns

10ms

Access Time

Hit rate

• fraction of accesses found at a given level

• normally talk about the miss rate (1− hit rate)

Hit time

• Time to access cache + check for hit/miss

Miss penalty

• Time taken to replace block from next level

Average Memory Access Time
hit time + miss rate ×miss penalty

Access Time

Example: 500MHz CPU
ALU: 50%, load/store: 30%, branch: 20%

Assume branch delay slots are all �lled with nops.
Hit rate: 95%, miss penalty: 60ns, hit time: 2ns

MIPS CPI w/o cache for load/store:
0.5× 1 + 0.2× 2 + 0.3× 30 = 9.9

MIPS CPI w/ cache for load/store:
0.5× 1 + 0.2× 2 + 0.3× (1 + 0.05× 30)︸ ︷︷ ︸

memory
= 1.65

Cache Organization

The cache is simply a smaller memory; suppose it
holds N blocks of M words each.

• need mapping function
f : addr → [0, N − 1]× [0,M − 1]

• what happens when f(a) = f(b) for a 6= b?
⇒ store information to reconstruct the address

Simple strategy: direct-mapped

• Let a be a word address. Then:
f(a) = ((a/M) mod N, a modM)

• Save a/MN to reconstruct address

Direct-Mapped Cache

Example: 4KB cache, 32 byte blocks.

• M = 32/4 = 8 words

• N = 4096/32 = 128 blocks

Calculating f(a):

• Block index: (a/M) mod N

• Word offset: a modM

20

word 00indexcache tag

7 3 2

The top bits of the address (tag) are stored in the
cache so we can reconstruct the address.

Direct-Mapped Cache Organization

wordhit?

index

word
offset

MUX

b
lo

cks

V w0 w7

=?

tag

tag

Data + tag for a block is called a cache line.

Cache Misses

Handling a cache miss:

• Miss detected

• Address sent to the next level of the memory
hierarchy

• Once data returned, re�ll the cache

• Processor gets data

Done by a hardware �nite state machine:
the cache control

What happens to the processor pipeline?

Pipelined Execution

WBMEMIF EXRD

0

IR2 IR3

0

1

IR1

1

IR4

alu

CLK

PCCLK

register
file

CLK

0x1234

0x1234

lw $1, 4($3)

Pipelined Execution

EXRD MEMIF WB
IR4

1

0

1

0

IR3IR2IR1

lw $1, 4($3)

CLK
register

file

0x1238

lw $1, 4($3)

CLK

alu

0x1234
CLK PC

Pipelined Execution

MEMEXRDIF WB
IR1

1

0

1

0

IR3IR2 IR4

file

0x123c

add $2,$3,$4

add $2,$3,$4

CLK

CLK

0x1238

lw $1, 4($3)

alu

CLK PC

register

Pipelined Execution

IF RD EX WBMEM

1

IR3IR2IR1 IR4

0

0

1

Cache miss!!

CLK

PCCLK

alu

register
file

CLK

0x123c

or $3,$1,$2

lw $1, 4($3)

add $2,$3,$4or $3,$1,$2

0x1240

Pipelined Execution

IF RD EX WBMEM

1

IR1 IR3 IR4

0

0

1

IR2

gstall

CLK

PCCLK

alu

register
file

CLK

0x123c

or $3,$1,$2

lw $1, 4($3)

add $2,$3,$4or $3,$1,$2

0x1240

Handling Writes

Write through

• Write data to the cache + next level of hierarchy

Write back

• Write data to cache only

• Next level no longer has latest copy of data!

• Keep track of whether line is clean or dirty

Pros and Cons?

