Memory Design

Memory can be built in different ways...
e Dynamic (DRAM): “leaky,” has to be refreshed
periodically
e Static (SRAM)

Memory access latency:
e DRAM: 50-70ns, larger memory size (can fit
more in a given area)
e SRAM: 3-10ns, smaller memory size

CPU clock cycle time: 0.5-2ns

Processor-Memory Gap

Component Capacity Speed
Transistors/logic | 1.4x each year | 2x in 3 years
DRAM 4% in 5 years | 1.4x in 10 years
Disk 4% in 3 years | 1.4x in 10 years

The gap between processor speed and memory
speed is growing.

CPI Equation

Suppose: 60ns DRAM, 500MHz CPU.

Instruction mix:
ALU: 50%, load/store: 30%, branch: 20%

Assume branch delay slots are all filled with nops.

MIPS CPI:
0bx14+02x2+4+0.3x 30
= 9.9l

Problem: memory is too slow.

Speeding Up Memory Access

e Build a small, fast memory (cache)

e Use to store frequently accessed blocks of
memory

e When it fills up, discard some blocks and replace
them with others

e Works well if we are reusing data blocks

incrementing a variable, loops, function
calls, etc.

fosL

Locality Principles

e the location of a memory reference is likely to be
the same as another recent reference

e loops, function calls, etc (code)

e variables are reused in a program

e the location of a memory reference is likely to be
hear another recent reference

e matrices, arrays
e stack accesses

Cache Access

Reading memory in the presence of a cache:
o Check if the address is present in the cache
o If present, return data from the cache (a cache
hit)
o If absent (a cache miss), read a block of data
from the main memory, store it in the cache, and
return data.

Why not repeat this since memory is slow?

Memory Hierarchy

100-1000B registers 0.5-2ns

load/store I compiler/programmer

AKB-64KB level 1 cache 2—-4ns

cache miss I hardware cache control

512KB-8MB level 2 cache 5-20ns

cache miss I hardware cache control

64MB-4GB main memory 50-120ns

page fault I operating system

9GB-512GB disk 10ms

awl) ssadoe Jabie| ‘syo0|q 1ab601q ‘abeiols 1abie)

I tape robot/operator

>1TB tape ?27?7?

\J

Access Time

Hit rate
e fraction of accesses found at a given level
e normally talk about the miss rate (1 — hit rate)

Hit time
e Time to access cache + check for hit/miss

Miss penalty
e Time taken to replace block from next level

Average Memory Access Time
hit time + miss rate x miss penalty

Access Time

Example: 500MHz CPU
ALU: 50%, load/store: 30%, branch: 20%

Assume branch delay slots are all filled with nops.
Hit rate: 95%, miss penalty: 60ns, hit time: 2ns

MIPS CPIl w/o cache for load/store:
0bx1+4+02%x24+0.3x30=09.9

MIPS CPIl w/ cache for load/store:
0.5x1+4+02x2+0.3x(1+0.05x30)=1.65

memory

fosL

Cache Organization

The cache is simply a smaller memory; suppose it
holds N blocks of M words each.

e need mapping function
fraddr — [O,N — 1] x [0, M — 1]
e what happens when f(a) = f(b) for a # b?
= store information to reconstruct the address

Simple strategy:

e Let a be a word address. Then:
f(a) = ((a/M) mod N,a mod M)
e Save a/M N to reconstruct address

Direct-Mapped Cache

4KB cache, 52 byte blocks.

o M=32/4 = & words
e N=4096/32 = 128 blocks

Calculating f(a):
e Block index: (a/M) mod N
e Word offset: a mod M

cache tag index word | 00

20 7 3 2

The top bits of the address (tag) are stored in the
cache so we can reconstruct the address.

Direct-Mapped Cache Organization

tag \ wO w7

index

—- N P |, -
(@]
(@]
2}
w

word - o0 °

offset e e o M

tag

hit? word

Cache Misses

Handling a cache miss:
e Miss detected

e Address sent to the next level of the memory
hierarchy

e Once data returned, refill the cache

e Processor gets data

Done by a hardware finite state machine:
the

What happens to the processor pipeline?

Pipelined Execution

IF ! RD ! EX ! MEM
 1R1 :.I R2 :. | R3
lw $1, 4($3) ! ! :
- - :
register |
S il -»I— !
[>a|u

0x1234 4

0x1234 Bt |_. | J
C&c> :C E —»I—»l E

CLK

Pipelined Execution

IF : RD
L IRL
lw $1, 4($3) !
] register
Clic> file

0x12341

CLK :>

0x1238 }

PC

lw $1, 4($3)

CLK

Pipelined Execution

IF

RD : EX : MEM WB

| R1

add $2, $3, $4

Y

add $2, $3, $4 lw $1, 4($3) I

\
-
&3
R

register
: Clic> file
: >a|u - B
0x1238 { | Ei}__. | J
1 1 1
wp e] :
ox123c 4 ! .

CLK

Pipelined Execution

IF RD ' EX

| R1

or $3, %1, $2

Y

or $3, $1, $2 add $2, $3, $4

register
: Clic> file
ox123c : E:}__.
1 1
Cﬁc> PC :
0x1240 4 |

lw $1, 4($3)

CLK

Cache miss!!

fosL

Pipelined Execution

IF ! RD ! EX ! MEM ' WB
L I R1 ‘III R3 I'I R4
. > >
or $3,$1,$2 !
] register
Clic> file
0x123c | 0
CLK 1
—qg> PC T—
0x1240 }

or $3, $1, $2 add $2, $3, $4

lw $1, 4($3)

CLK

Handling Writes

Write through
e Write data to the cache + next level of hierarchy

Write back
e Write data to cache only
o Next level no longer has latest copy of datal
o Keep track of whether line is clean or dirty

Pros and Cons?

