Real Numbers

How do we represent real numbers?

Several issues:

- How many digits can we represent?
- What is the range?
- How accurate are mathematical operations?
- Consistency...

Is $a+b=b+a$?
Is $(a+b)+c=a+(b+c)$?
Is $(a+b)-b=a$?

Real Numbers

How do we represent real numbers?

Several issues:

- How many digits can we represent?
- What is the range?
- How accurate are mathematical operations?
- Consistency...

Is $a+b=b+a$?
Is $(a+b)+c=a+(b+c)$?
Is $(a+b)-b=a$?

Fixed Point

Basic idea:

radix point is here
Choose a fixed place in the binary number where the radix point is located.

For the example above, the number is
$(010.01010)_{2}=2+2^{-2}+2^{-4}=(2.3125)_{10}$
How would you do mathematical operations?

Floating-Point

Some problematic numbers....

$$
\begin{aligned}
& 6.023 \times 10^{23} \\
& 6.673 \times 10^{-11} \\
& 6.62607 \times 10^{-34}
\end{aligned}
$$

Scientific computations require a number of digits of precision...

But they also need range
\Rightarrow permit the radix point to move
\Rightarrow floating-point numbers

Floating-Point: Scientific Notation

- Number represented as:
- mantissa, exponent
- Arithmetic
- multiplication, division: perform operation on mantissa, add/subtract exponent
- addition, subtraction: convert operands to have the same exponent value, add/subtract mantissas

Fixed Point

Basic idea:

radix point is here
Choose a fixed place in the binary number where the radix point is located.

For the example above, the number is
$(010.01010)_{2}=2+2^{-2}+2^{-4}=(2.3125)_{10}$
How would you do mathematical operations?

Floating-Point

Some problematic numbers....

$$
\begin{aligned}
& 6.023 \times 10^{23} \\
& 6.673 \times 10^{-11} \\
& 6.62607 \times 10^{-34}
\end{aligned}
$$

Scientific computations require a number of digits of precision...

But they also need range
\Rightarrow permit the radix point to move
\Rightarrow floating-point numbers

Floating-Point: Scientific Notation

- Number represented as:
- mantissa, exponent
- Arithmetic
- multiplication, division: perform operation on mantissa, add/subtract exponent
- addition, subtraction: convert operands to have the same exponent value, add/subtract mantissas

Floating-Point: Scientific Notation

Representation:

- IEEE 754 standard
- Standardized in mid-80s
- Single precision: 32 bits
- Double precision: 64 bits

Both supported by the MIPS processor.

Floating-Point Basics

Several design issues.

- Format Choices:
- representation of mantissa (aka significand), exponent, sign
- normal forms

$$
6.023 \times 10^{23}=0.6023 \times 10^{24}=\ldots
$$

- range and precision
- Arithmetic:
- equalize exponents for add/subtract
- inexact results, rounding
- exceptional conditions/errors

IEEE Single Precision Format

\mathbf{S}	exponent (E)	mantissa (M)
$\mathbf{1}$	$\mathbf{8}$	23

- Uses biased exponent, actual exponent is ($E-127$). 127 is called the bias (excess 127 bias)
- Number:

$$
(-1)^{S}(1 . M) \times 2^{E-127}
$$

when $0<E<255$.

- The implied 1 is referred to as a hidden bit.
- Double-precision: 64 bits, 11-bit exponent, excess 1023 bias, 52-bit significand

Normalized Numbers

Significand is of the form 1.x.
Example: $0.375=(0.011)_{2}=+(1.1)_{2} \times 2^{-2}$

$\mathbf{0}$	01111101	10000000000000000000000
+	$(125)_{10}$	$(0.1)_{2}$

Example: $-3.25=-(11.01)_{2}=-(1.101)_{2} \times 2^{1}$

1	10000000	10100000000000000000000
-	$(128)_{10}$	$(0.101)_{2}$

Example: $0=(0)_{2}=$?

Zero Exponent

$E=0$ is special for this reason.

- Zero significand: number is 0
- Non-zero significand: denormalized number

$$
(-1)^{S}(0 . M) \times 2^{-126}
$$

- Denormal numbers are used to extend the range of floating-point numbers.
- Double-precision: exponent would be -1022 .
- Some hardware does not implement denormal arithmetic, but uses software emulation

On a Sun UltraSparc, > 80x slowdown...

Adding Normalized Numbers

To calculate $X+Y$, assuming $|Y| \geq|X|$:

- Alignment of radix point (denormalize smaller number)
$-d:=\operatorname{Exp}(Y)-\operatorname{Exp}(X)$, set $\operatorname{Exp}:=\operatorname{Exp}(Y)$
$-\operatorname{Sig}(X):=\operatorname{Sig}(X) \gg d$
- Add the aligned components
$-\operatorname{Sig}=\operatorname{Sig}(X)+\operatorname{Sig}(Y)$
- Normalize the result
- Shift Sig left/right, changing Exp
- Check for overflow in Exp
- Round; repeat if not normalized

Adding Normalized Numbers

Example: 4-bit significand
$1.0110 \times 2^{3}+1.1000 \times 2^{2}$

- Align

$$
\begin{array}{r}
1.0110 \times 2^{3} \\
+\quad 0.1100 \times 2^{3}
\end{array}
$$

- Add

$$
10.0010 \times 2^{3}
$$

- Normalize
1.0001×2^{4}

Adding Normalized Numbers

Example: 4-bit significand
$1.0001 \times 2^{3}-1.1110 \times 2^{1}$

- Align

$$
\begin{array}{r}
1.0001 \times 2^{3} \\
-0.01111 \times 2^{3}
\end{array}
$$

- Subtract

$$
0.10011 \times 2^{3}
$$

- Normalize/Round

$$
1.0011 \times 2^{2}
$$

Without extra bit, result would be 1.0010×2^{2}

Accuracy

IEEE standard: want result to be as accurate as possible

- Maximum error: $\frac{1}{2}$ ulp (units in last place) when compared to infinite precision arithmetic
- Alignment step can be problematic!
- How many bits are actually needed for arithmetic?
- Extra bit in last example: guard bit

Standard specifies 4 different rounding modes:

- round to nearest even (default)
- round toward $+\infty$
- round toward $-\infty$
- round toward 0

How many bits are necessary to correctly implement the standard?

Remember, the maximum permissible error is $\frac{1}{2}$ ulp.

Round Bit

Example: 4-bit significand
$1.0000 \times 2^{0}-1.0001 \times 2^{-2}$

- Align

$$
\begin{array}{r}
1.0000 \times 2^{0} \\
-\quad 0.010001 \times 2^{0}
\end{array}
$$

- Subtract

$$
0.101111 \times 2^{0}
$$

- Normalize/Round

$$
\begin{aligned}
& 1.01111 \times 2^{-1} \\
& 1.1000 \times 2^{-1} \quad \text { (simple round up) }
\end{aligned}
$$

Without extra bit, result would be 1.0111×2^{-1}

Sticky Bit And Round To Nearest Even

Example: 4-bit significand
$1.0000 \times 2^{0}+1.0001 \times 2^{-5}$

- Align

$$
\begin{aligned}
1.0000 & \times 2^{0} \\
+ & 0.000010 \mid 001
\end{aligned} \times 2^{0}
$$

- Add

$$
1.000010 \mid 001 \times 2^{0}
$$

- Normalize/Round

```
1.0001 }\times\mp@subsup{2}{}{0}\mathrm{ , or
1.0000 }\times\mp@subsup{2}{}{0
```

Sticky bit: keep track of whether the bits "shifted out" are non-zero.

Infinity and NaNs

Sources of error:

- If the result is too large to be represented

$$
\Rightarrow \pm \infty
$$

-What about $0 / 0, \infty-\infty$?
\Rightarrow "not a number" (NaN)

- NaNs propagate
$\mathrm{NaN}+x=\mathrm{NaN}$
- Can be used to initialize floating-point variables.

Representation: exponent is all " 1 "s (255 or 2047). If significand is $0, \infty$; otherwise NaN .

Exceptions

- Invalid Operation
$-\infty-\infty, 0 \times \infty$, etc.
- square root of a negative number
- Overflow
- Divide by Zero
- Underflow
- denormal result or non-zero result underflows to zero
- Inexact
- rounding error is not zero

