Multiplying two numbers:

m-bits \times n-bits = (m + n)-bit result

m-bits: $2^m - 1$ is the largest number $\Rightarrow (2^m - 1)(2^n - 1) = 2^{m+n} - 2^m - 2^n + 1$

Integer Multiplication: First Try

How do we build this?

Registers And Shift Registers

Register with shift left:

Register with write:

Control

Observations:

- 32 iterations for multiplication \Rightarrow 32 cycles
- How long does 1 iteration take?
- Suppose 5% of ALU operations are multiply ops, and other ALU operations take 1 cycle. $\Rightarrow CPI_{alu} = 0.05 \times 32 + 0.95 \times 1 = 2.55!$
- \bullet Half of the bits of the multiplicand are zero \Rightarrow 64-bit adder is wasted
- \bullet 0's inserted when multiplicand shifted left \Rightarrow product LSBs don't change

New Control

Share storage for product register and multiplier!

Integer Multiplication

- Each step requires an add and shift
- MIPS: hi and lo registers correspond to the two parts of the product register
- Hardware implements multu
- Signed multiplication:
 - Determine sign of the inputs, make inputs positive
 - Use multu hardware, fix up sign
 - Better: Booth's algorithm

Example:

Instead we could subtract early and add later...

6x = 2x + 4x = -2x + 8x

11110000 = 10000XXXX - 0001XXXX

Originally for speed: shifts faster than adds

Depending on current and previous bits, do one of the following:

- 00: middle of a run of $0s \Rightarrow no$ operation
- \bullet 01: end of a run of 1s \Rightarrow add multiplicand to left half of product
- 10: start of a run of 1s \Rightarrow subtract multiplicand from left half of product
- 11: middle of a run of 1s \Rightarrow no operation

As before, shift product register right by 1 bit per step.

Red: steps where subtracting would result in a negative number, i.e. quotient bit is zero.

	0101	quotient
divisor	0010 1011	dividend
	00010000	
	- 00001000	
	00000011	
	00000100	
	- 0000010	
	0000001	remainder

Pad out the dividend and divisor to 8 bits.

Observations:

Half the bits in the divisor are zero

 \Rightarrow 64-bit ALU wasted

- Instead of shifting divisor right, we can shift remainder left
- When does the first iteration shift in a 1 into the quotient?

 \Rightarrow save 1 iteration

What is the initial value of the divisor?

It's the same hardware...

How do we represent real numbers?

Several issues:

- How many digits can we represent?
- What is the range?
- How accurate are mathematical operations?
- Consistency...

Is
$$a + b = b + a$$
?
Is $(a + b) + c = a + (b + c)$?
Is $(a + b) - b = a$?

Basic idea:

01001010 radix point is here

Choose a fixed place in the binary number where the radix point is located.

For the example above, the number is

 $(010.01010)_2 = 2 + 2^{-2} + 2^{-4} = (2.3125)_{10}$

How would you do mathematical operations?

Some problematic numbers....

 6.023×10^{23} 6.673×10^{-11} 6.62607×10^{-34}

Scientific computations require a number of digits of precision...

But they also need range

- \Rightarrow permit the radix point to move
- \Rightarrow floating-point numbers

Floating-Point: Scientific Notation

- Number represented as:
 - mantissa, exponent
- Arithmetic
 - multiplication, division: perform operation on mantissa, add/subtract exponent
 - addition, subtraction: convert operands to have the same exponent value, add/subtract mantissas

