Integer Multiplication

Multiplying two numbers:

m-bits $\times n$-bits $=(m+n)$-bit result m-bits: $2^{m}-1$ is the largest number

$$
\Rightarrow\left(2^{m}-1\right)\left(2^{n}-1\right)=2^{m+n}-2^{m}-2^{n}+1
$$

Integer Multiplication: First Try

How do we build this?

Registers And Shift Registers

Register with shift left:

Register with write:

Control

Integer Multiplication

Observations:

- 32 iterations for multiplication $\Rightarrow 32$ cycles
- How long does 1 iteration take?
- Suppose 5% of ALU operations are multiply ops, and other ALU operations take 1 cycle.

$$
\Rightarrow C P I_{a l u}=0.05 \times 32+0.95 \times 1=2.55!
$$

- Half of the bits of the multiplicand are zero \Rightarrow 64-bit adder is wasted
- O's inserted when multiplicand shifted left \Rightarrow product LSBs don't change

Using A 32-Bit ALU

New Control

Bottom half of product register is zero initially.

Each iteration:
adds 1 product bit loses one multiplier bit

Share storage for product register and multiplier!

Integer Multiplication Hardware

Integer Multiplication Hardware

Integer Multiplication Hardware

Integer Multiplication Hardware

KsL

Integer Multiplication Hardware

Integer Multiplication Hardware

Integer Multiplication

- Each step requires an add and shift
- MIPS: hi and lo registers correspond to the two parts of the product register
- Hardware implements multu
- Signed multiplication:
- Determine sign of the inputs, make inputs positive
- Use multu hardware, fix up sign
- Better: Booth's algorithm

Booth Multiplication

Example:

Instead we could subtract early and add later...
$6 x=2 x+4 x=-2 x+8 x$
$11110000=10000 X X X X-0001 X X X X$

Booth Multiplication

Current	Right	Explanation
1	0	beginning of run of 1 s
0	1	end of run of 1 s
1	1	middle of run of 1 s
0	0	middle of run of Os

Originally for speed: shifts faster than adds

Booth Multiplication

Depending on current and previous bits, do one of the following:

- OO: middle of a run of $\mathrm{Os} \Rightarrow$ no operation
- 01: end of a run of $1 s \Rightarrow$ add multiplicand to left half of product
- 10: start of a run of $1 \mathrm{~s} \Rightarrow$ subtract multiplicand from left half of product
- 11: middle of a run of $1 \mathrm{~s} \Rightarrow$ no operation

As before, shift product register right by 1 bit per step.

Integer Division

divisor \begin{tabular}{rrr}

0010 \& 0101 \& | quotient |
| :---: |
| dividend |

\& | 0010 | 0010 |
| ---: | :--- |
| 0011 | |
| | $-\frac{0010}{0001}$ | \&

\& remainder
\end{tabular}

Red: steps where subtracting would result in a negative number, i.e. quotient bit is zero.

Integer Division

divisor	0101	quotient
	$0 0 1 0 \longdiv { 1 0 1 1 }$	dividend
	00010000	
	- 00001000	
	00000011	
	00000100	
	- 00000010	
	00000001	remainde

Pad out the dividend and divisor to 8 bits.

Integer Division

Integer Division

MsL

Integer Division

Observations:

- Half the bits in the divisor are zero \Rightarrow 64-bit ALU wasted
- Instead of shifting divisor right, we can shift remainder left
- When does the first iteration shift in a 1 into the quotient?

\Rightarrow save 1 iteration

What is the initial value of the divisor?

Integer Division

New Control

Final Divider Hardware

Mult/Div

It's the same hardware...

Real Numbers

How do we represent real numbers?

Several issues:

- How many digits can we represent?
- What is the range?
- How accurate are mathematical operations?
- Consistency...

Is $a+b=b+a$?
Is $(a+b)+c=a+(b+c)$?
Is $(a+b)-b=a$?

Fixed Point

Basic idea:

radix point is here
Choose a fixed place in the binary number where the radix point is located.

For the example above, the number is
$(010.01010)_{2}=2+2^{-2}+2^{-4}=(2.3125)_{10}$
How would you do mathematical operations?

Floating-Point

Some problematic numbers....

$$
\begin{aligned}
& 6.023 \times 10^{23} \\
& 6.673 \times 10^{-11} \\
& 6.62607 \times 10^{-34}
\end{aligned}
$$

Scientific computations require a number of digits of precision...

But they also need range
\Rightarrow permit the radix point to move
\Rightarrow floating-point numbers

Floating-Point: Scientific Notation

- Number represented as:
- mantissa, exponent
- Arithmetic
- multiplication, division: perform operation on mantissa, add/subtract exponent
- addition, subtraction: convert operands to have the same exponent value, add/subtract mantissas

