
Integer Multiplication

Multiplying two numbers:

multiplicand 1 0 1 0
multiplier × 1 0 0 1

1 0 1 0
0 0 0 0

0 0 0 0
+ 1 0 1 0

1 0 1 1 0 1 0

m-bits × n-bits = (m+ n)-bit result

m-bits: 2m − 1 is the largest number

⇒ (2m − 1)(2n − 1) = 2m+n − 2m − 2n + 1

Integer Multiplication: First Try

64−bit product

64−bit multiplicand

32−bit multiplier

control FSM

shift_left

shift_right

lsb

write

alu_control

64

64

64

64b ALU

How do we build this?

Registers And Shift Registers

Register with shift left:

FF
0
1

0
10

FF FF FF
0
1

0
1

QD QD QDQD

Register with write:

FF
0
1

FF FF FF
0
1

0
1

0
1

QD D QDD QQ

Control

check
lsb

to product
add multiplicand

start

done

shift multiplicand left by 1

shift multiplier right by 1

Y

1

0

iteration?
32nd N

Integer Multiplication

Observations:

• 32 iterations for multiplication ⇒ 32 cycles

• How long does 1 iteration take?

• Suppose 5% of ALU operations are multiply ops ,

and other ALU operations take 1 cycle.
⇒ CPIalu = 0.05× 32 + 0.95× 1 = 2.55!

• Half of the bits of the multiplicand are zero
⇒ 64-bit adder is wasted

• 0's inserted when multiplicand shifted left
⇒ product LSBs don't change

Using A 32-Bit ALU

64−bit product

32−bit multiplier

32−bit multiplicand

control FSM

shift_right

lsb

write

alu_control
32b ALU

shift_right

32

32

top half

32
carry−out of adder

New Control

add is performed!

lsb

start

done

shift multiplier right by 1

to left product

shift product reg right by 1

don’t forget
to shift in the

Bottom half of product
register is zero initially.

Each iteration:
 adds 1 product bit
 loses one multiplier bit

carry−out when an

check

add multiplicand

Y

1

0

N
iteration?

32nd

Share storage for product register and multiplier!

Integer Multiplication Hardware

32−bit multiplicand

64−bit product initially, multiplier bits stored
here.

32

shift_right

control FSM

write

alu_control
32b ALU

lsb

top half

32

32
carry−out of adder

Integer Multiplication Hardware

0 1 1 0

1 0 0 1

0
0110

0 0 0 0
lsb

control FSM

write

alu_control
32b ALU

shift_right

Integer Multiplication Hardware

0 1 1 0

0

0 0 1 1 1 0 00

1001

lsb

control FSM

write

alu_control
32b ALU

shift_right

Integer Multiplication Hardware

0 1 1 0

0

1 0 1 00 0 0 1

0111

lsb

control FSM

write

alu_control
32b ALU

shift_right

Integer Multiplication Hardware

0 1 1 0

0

0 0 0 0 1 1 0 1

0110

lsb

control FSM

write

alu_control
32b ALU

shift_right

Integer Multiplication Hardware

0 1 1 0

0

0 1 1 00 0 1 1

1001

lsb

control FSM

write

alu_control
32b ALU

shift_right

Integer Multiplication

• Each step requires an add and shift

• MIPS: hi and lo registers correspond to the two
parts of the product register

• Hardware implements multu

• Signed multiplication:

– Determine sign of the inputs, make inputs
positive

– Use multu hardware, �x up sign

– Better: Booth's algorithm

Booth Multiplication

Example:

multiplicand 1 0 1 0
multiplier × 0 1 1 0

0 0 0 0
1 0 1 0

1 0 1 0
+ 0 0 0 0

0 1 1 1 1 0 0

Instead we could subtract early and add later...

6x = 2x+ 4x = −2x+ 8x

11110000 = 10000XXXX − 0001XXXX

Booth Multiplication

 add back!

0 1 1 1 1 0

run of 1s

first "1" after 0
 subtract!

first "0" after
run of 1s

Current Right Explanation

1 0 beginning of run of 1s
0 1 end of run of 1s
1 1 middle of run of 1s
0 0 middle of run of 0s

Originally for speed: shifts faster than adds

Booth Multiplication

Depending on current and previous bits, do one of
the following:

• 00: middle of a run of 0s ⇒ no operation

• 01: end of a run of 1s ⇒ add multiplicand to left
half of product

• 10: start of a run of 1s ⇒ subtract multiplicand
from left half of product

• 11: middle of a run of 1s ⇒ no operation

As before, shift product register right by 1 bit per
step.

Integer Division

0101 quotient
divisor 0010 1011 dividend

0010

- 0010

0011

0010

- 0010

0001 remainder

Red: steps where subtracting would result in a
negative number, i.e. quotient bit is zero.

Integer Division

0101 quotient
divisor 0010 1011 dividend

00010000

- 00001000

00000011

00000100

- 00000010

00000001 remainder

Pad out the dividend and divisor to 8 bits.

Integer Division

64−bit remainder

64−bit divisor

32−bit quotient

control FSM

write

alu_control

64

64

64

shift_right

shift_left

result

msb

64b ALU

Integer Division

subtract divisor from remainder

quotient: shift in 0
quotient: shift in 1

shift divisor right by 1

check

done

msb

start

restore remainder

33rd
iteration?

NY

1 0

Integer Division

Observations:

• Half the bits in the divisor are zero
⇒ 64-bit ALU wasted

• Instead of shifting divisor right, we can shift
remainder left

• When does the �rst iteration shift in a 1 into the
quotient?

⇒ save 1 iteration

What is the initial value of the divisor?

Integer Division

32−bit quotient

64−bit remainder

32−bit divisor

control FSM

write

alu_control
32b ALU

32

32

top half

32

shift_left

result

shift_left

msb

New Control

msb
check

done

subtract divisor from remainder

restore remainder
quotient: shift in 0

quotient: shift in 1

start

shift remainder left by 1

Remainder loses one
bit per iteration;

Quotient gains one bit
per iteration.

 => share registers!

except last iteration!
32nd NY

1

remainder := dividend << 1

0

iteration?

Final Divider Hardware

32−bit divisor

64−bit remainder

quotient bits go here

control FSM

write

alu_control
32b ALU

top half

32

32

32

shift_left

result
msb

Mult/Div

64−bit remainder

carry−out of adder

divisor/multiplicand

result/lsb

write

control FSM

alu_control
32b ALU

top half

32

32

32

shift_left, shift_right

msb

It's the same hardware...

Real Numbers

How do we represent real numbers?

Several issues:

• How many digits can we represent?

• What is the range?

• How accurate are mathematical operations?

• Consistency...

Is a+ b = b+ a?

Is (a+ b) + c = a+ (b+ c)?

Is (a+ b)− b = a?

Fixed Point

Basic idea:
0 1 0 0 1 0 1 0

radix point is here

Choose a �xed place in the binary number where the
radix point is located.

For the example above, the number is

(010.01010)2 = 2 + 2−2 + 2−4 = (2.3125)10

How would you do mathematical operations?

Floating-Point

Some problematic numbers....

6.023× 1023

6.673× 10−11

6.62607× 10−34

Scienti�c computations require a number of digits
of precision...

But they also need range
⇒ permit the radix point to move
⇒ �oating-point numbers

Floating-Point: Scienti�c Notation

sign
6.023 x 10

23
exponent

mantissa radix (base)

+

• Number represented as:

– mantissa, exponent

• Arithmetic

– multiplication, division: perform operation on

mantissa, add/subtract exponent

– addition, subtraction: convert operands to

have the same exponent value, add/subtract
mantissas

