Integer Multiplication

Multiplying two numbers:

multiplicand 1 0 1 O
multiplier x 1 0 O 1
1 O 1 O
O O O O
O O O O
4+ 10 10
10 1 1 0 1O

m~bits x n-bits = (m + n)-bit result

m-bits: 2™ — 1 is the largest number
= (2Mm —1)(2" — 1) =2mtn _2m _on 4]

fosL

Integer Multiplication: First Try

shift left

64-bit multiplicand -

32-bit multiplier

shift_right

al u_control

| sb

-

64

64-bit product «

wite

1 64

How do we build this?

Registers And Shift Registers

Register with shift left:

0
5 H Le o L 3 L &
FF FF FF FF
> > > >

Register with write:

1 1 1 1
_LL}D QH _LL}D QH _LL}D QH _LL}D QH
FF FF FF FF

Control

start

1 check

\ Isb)
o 0
add multiplicand
to product

Lshift multiplicand left by 1

\
shift multiplier right by 1
\
Y 32nd N

done «——m

iteration?

Integer Multiplication

o 52 iterations for multiplication = 32 cycles
e How long does 1 iteration take?

e Suppose 5% of ALU operations are multiply ops,
and other ALU operations take 1 cycle.
= CPI,, = 0.05 x 32+ 0.95 x 1 = 2.55!

o Half of the bits of the multiplicand are zero
= 04-bit adder is wasted

e O’s inserted when multiplicand shifted left
= product LSBs don't change

Using A 32-Bit ALU

32-Dbit multiplicand

32-Dbit multiplier

shift_right

alu_control

Isb

carry—out of adder

—+ 32
shift_right
top half -

-+ 32

write

64-bit product

New Control

start
1 check)
Isb Bottom half of product
register is zero initially.
add multiplicand 0 : .
to left product Each iteration: |
adds 1 product bit
L L loses one multiplier bit
shift product reg right by 1
\
don't forget shift multiplier right by 1
to shift in the V
carry—out when an
add is performe(;l(!)ne Y 32nd N
iteration?

Share storage for product register and multiplier!

Integer Multiplication Hardware

32-hbit multiplicand

alu_control
carry—out of adder
—+ 32
{ shift_right
top half =
P \ write
| Isb

132

64~-bit product initially, multiplier bits stored

here.

fosL

Integer Multiplication Hardware

0110

alu contro

-

1. 0110
{» { shift_right
0000 1001 |[——

| | sb

Integer Multiplication Hardware

0110

alu contro

-

1. 1001
{» { shift_right
0011 0100 [—0

| | sb

Integer Multiplication Hardware

0110

alu contro

-

1. 0111
{» { shift_right
0001 1010 [——

| | sb

Integer Multiplication Hardware

0110

alu contro

-

1. 0110
{» { shift_right
0000 1101 |[—-m

| | sb

Integer Multiplication Hardware

0110

alu contro

-

1. 1001
{» { shift_right
0011 0110 |—-0

| | sb

Integer Multiplication

e Each step requires an add and shift

e MIPS: hi and 1o registers correspond to the two
parts of the product register

e Hardware implements multu
o Sighed multiplication:
— Determine sign of the inputs, make inputs
positive
— Use multu hardware, fix up sign
— Better: Booth’s algorithm

Booth Multiplication

Example:

multiplica hd
multiplier X

1

10
+ O 0 O O
c 111100

Instead we could subtract early and add later...

11110000 = 10000 X XXX — 0001 XX XX

fosL

Booth Multiplication

run of 1s

\
e

011110
first "O" after

first "1" after O

run of 1s subtract!
add back!
Current | Right Explanation
1 O | beginning of run of 1s
0, 1 end of run of 1s
1 1 middle of run of 1s
0, 0, middle of run of Os

Originally for speed: shifts faster than adds

Booth Multiplication

Depending on current and previous bits, do one of
the following:

e 00: middle of a run of Os = no operation

e O1: end of a run of 1s = add multiplicand to left
half of product

o 10: start of a run of 1s = subtract multiplicand
from left half of product

e 11: middle of a run of 1s = no operation

As before, shift product register right by 1 bit per
step.

Integer Division

0101 quotient
divisor 0010 | 1011 dividend

0010
- 0010
0011
0010
- 0010
0001 remainder

Red: steps where subtracting would result in a
hegative humber, i.e. quotient bit is zero.

Integer Division

0101 quotient
divisor 0010 | 1011 dividend

00010000
- 00001000
00000011
00000100
- 00000010
00000001 remainder

Pad out the dividend and divisor to & bits.

Integer Division

shift _right
64-bit divisor -

32-Dit quotient

shift left

alu control
— resul t

64

64—-bit remainder «

1T 64 msb

Integer Division

start

|

subtract divisor from remainder =
\

1 check 0

|

éﬁ?)tt?éﬁtresrp’nﬁltni?le(; quotient: shift in 1

L shift divisor right by 1 J
¥

Y 33rd N
done iteration?

Integer Division

e Half the bits in the divisor are zero
= 04-bit ALU wasted

e Instead of shifting divisor right, we can shift
remainder left

e When does the first iteration shift in a 1 into the
quotient?
— save 1 iteration

What is the initial value of the divisor?

Integer Division

32-bit divisor

al u_control

shift_left

top

hal f

wite

- 32

64-hit remainder

32-bit quotient

shift left

nsb

resul t

New Control

start

|

remainder ;= dividend << 1

1 p

subtract divisor from remainder =

\
1 check 0
\ msb ‘
restore remainder quotient: shift in 1

guotient: shiftin O

L shift remainder left by 1 J
i

except last iteration!
Y 32nd N

done «——— . :
iteration?

Remainder loses one
bit per iteration,;

Quotient gains one bit
per iteration.

=> share registers!

Final Divider Hardware

32-hit divisor

alu contro

-

{ shift left

top hal f \ < T
wite

1 3 nmsb

64—bit remainder \ result

\
guotient bits go here

Mult/Div

divisor/multiplicand

alu_control

carry—out of adder

4 32
Y shift_left, shift_right

top half

-

[

write
=1 32

64—-bit remainder result/lsb

It’s the same hardware...

Real Numbers

How do we represent real humbers?

Several issues:
e How many digits can we represent?
e What is the range?
e How accurate are mathematical operations?
e Consistency...

lsa+b=b+ a?
Is (a+b)4+c=a+ (b+c)?
Is (a +b) — b =a?

Fixed Point

Basic idea:
01001010

/

radix point is here

Choose a fixed place in the binary number where the
radix point is located.

For the example above, the number is
(010.01010), =2 4+2"2 4+ 274 = (2.3125)1¢

How would you do mathematical operations?

Floating-Point

Some problematic humbers....

6.023 x 1023
6.673 x 10~ 11
6.62607 x 1034

Scientific computations require a number of digits
of precision...

But they also need range
= permit the radix point to move
= floating-point numbers

Floating-Point: Scientific Notation

S|gn exponent
\+ 6.023 x 102"

77_\

mantissa radix (base)

o Number represented as:
— mantissa, exponent
e Arithmetic
— multiplication, division: perform operation on
mantissa, add/subtract exponent

— addition, subtraction: convert operanols to

have the same exponent value, add/subtract
mantissas

fosL

