
Building Blocks For Arithmetic

Binary Addition: recall the full-adder design.

a b s

FA

carry

sum

s

b

a

(ab+ ab)s+ (ab+ ab)s

ab+ ab

ab+ as+ bs

Integer Addition

Full-adder:

• Three input bits a, b, s

• Output: two bits sum and carry

Logic equations and gate diagram derived from
truth-tables.

What about 4-bit addition?

Integer Addition

Solution 1: write truth-table, derive logic equations,

draw gate diagram.

Solution 2:

1 1 0 0

1 0 1 0
+ 0 1 1 1

1 0 0 0 1

Use a number of full-adders!

Integer Addition

least−significant

FAFAFA FA

10 1 1 0 1

0

11

0 0 1

001

bit: set carry−in to 0

carry−out
of one stage is the

carry−in for the next

1 0

2's complement? Addition time for N bits?

Integer Addition

Observation: all we need is the carry-out...
⇒ compute carry-out cout for blocks

• input: 0 0, cout = 0 kill

• input: 1 1, cout = 1 generate

• input: 0 1 or 1 0, cout=carry-in (cin) propagate

cout = cin · P +G
G = a · b
P = a+ b

Block codes:
G01 = G1 +G0P1

P01 = P0P1

Integer Addition

Carry Lookahead adder: compute block codes to
speed up carry computation.

the group
carry−in to
the group

carry−out for
FA

BLOCK CODE

2
22

2

full−adder array

block carry calculation

full−adder array

block carry calculation

full−adder array

block carry calculation

full−adder array

block carry calculation

Subtraction

To calculate a− b, use a+ (−b).

To calculate −b, �ip all the bits and add 1.

⇒ build it using an adder

adder

1

Combined Add/Subtract Unit

Given: one bit of control c, two N bit inputs a and b.
compute a+ b if c = 0, a− b if c = 1.

• Carry-in to the adder is c

• one input: a
• other input: b if c = 0, complement of b if c = 1.

Standard element: MUX (multiplexor)
c

y

x

c

y

1

0

x

Combined Add/Subtract Unit

c

adder

0 1 0 1 0 1 0 1 0 1 0 1 0 10 1

• Hierarchical design
• Reuse components

• Replication

Shifter

4-input MUX?

Simple shifter:

control

0123012301230123

 a2 a3a1a0 a0 a1 a2 a0 a1 a0

Arithmetic Logic Unit (ALU)

Example ALU: given inputs a and b, and an operation

code, produce output.

Operation code:

• 000: AND

• 001: OR

• 010: NOR

• 011: ADD

• 111: SUB

How do we implement this ALU?

Selecting An Operation

2-bit decoder: 2 bit input, 4 bit output

• input: 00, output: 0001

• input: 01, output: 0010

• input: 10, output: 0100

• input: 11, output: 1000

ALU: One Bit

Use decoder to select operation, and use combined

add/subtract unit.

decoder

a
b

0
1

FA

c1 c0c2

ALU: Multiple Bits

Chain ALU bit slices to get an N bit ALU:

data inputs
control inputs

carry chain

How can we use a better adder in the ALU?

Over�ow Detection

Over�ow = result of operation cannot be represented

Unsigned N-bit addition:

• Over�ow = result requires more than N bits
⇒ carry-out of MSB is 1

Signed addition:

• Adding two positive numbers

• Adding two negative numbers

Over�ow ≡ carry-in to MSB 6= carry-out of MSB

Comparison

When is a < b?

• a < b ≡ a− b < 0

• Subtract b from a, check sign of result

• Sign bit is MSB

When is a = b?

• a = b ≡ a− b = 0

• Subtract b from a, check if all bits are zero

• Use NOR gate

