Combinational Logic

Multiple levels of representation:

- Logic equations
- Truth tables
- Gate diagrams
- Switching circuits

Boolean algebra: tool to manipulate logic equations
An algebra on a set of two elements: $\{0,1\}$
Operations: AND, OR, complement

Boolean Algebra

Identities:

$$
\begin{aligned}
& 0 a=0 \quad 1 a=a \quad a a=a \quad a \bar{a}=0 \\
& 0+a=a \quad 1+a=1 \quad a+a=a \quad a+\bar{a}=1 \\
& a b=b a \\
& a+b=b+a \\
& a+(b+c)=(a+b)+c \\
& a(b+c)=a b+a c \\
& a+(b c)=(a+b)(a+c) \\
& \overline{(a+b)}=\bar{a} \bar{b} \\
& \overline{(a b)}=\bar{a}+\bar{b}
\end{aligned}
$$

Precedence: AND takes precedence over OR.
*s

Proving Logic Equations

Example: $(a+b)(a+c)=a+b c$
Algebraic proof?
Proof with Truth Tables:

a	b	c	$a+b$	$a+c$	$L H S$	$b c$	$R H S$
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Truth Tables To Logic Equations

a	b	c	out	Minterms	Maxterms
0	0	0	0	$\bar{a} \bar{b} \bar{c}$	$a+b+c$
0	0	1	1	$\bar{a} \bar{b} c$	$a+b+\bar{c}$
0	1	0	1	$\bar{a} \bar{c}$	$a+\bar{b}+c$
0	1	1	0	$\bar{a} b c$	$a+\bar{b}+\bar{c}$
1	0	0	1	$a \bar{b} \bar{c}$	$\bar{a}+b+c$
1	0	1	1	$a \bar{b} c$	$\bar{a}+b+\bar{c}$
1	1	0	0	$a b \bar{c}$	$\bar{a}+\bar{b}+c$
1	1	1	0	$a b c$	$\bar{a}+\bar{b}+\bar{c}$

Sum of Products: $\bar{a} \bar{b} c+\bar{a} b \bar{c}+a \bar{b} \bar{c}+a \bar{b} c$
Product of Sums:

$$
(a+b+c)(a+\bar{b}+\bar{c})(\bar{a}+\bar{b}+c)(\bar{a}+\bar{b}+\bar{c})
$$

Universality: NAND and NOR

$\square 0=-\infty$

Universal: can implement any combinational function using just NAND or just NOR gates.

\%

Minimizing Logic Equations

Earlier example:

$$
\bar{a} \bar{b} c+\bar{a} b \bar{c}+\underbrace{a \bar{b} \bar{c}+a \bar{b} c}_{a \bar{b}(c+\bar{c})=a \bar{b}}
$$

One can use Boolean algebra to simplify equations.
Systematic techniques:

- Karnaugh maps
- Quine-McCluskey
(details in section next week)

Word Problems

"Increment input by 1, compute result mod 5"
Representation: 3-bit binary input

	I_{2}	I_{1}	I_{0}	O_{2}	O_{1}	O_{0}
Input $=0$	0	0	0	0	0	1
Input $=1$	0	0	1	0	1	0
Input $=2$	0	1	0	0	1	1
Input $=3$	0	1	1	1	0	0
Input $=4$	1	0	0	0	0	0
Input $=5$	1	0	1	0	0	1
Input $=6$	1	1	0	0	1	0
Input $=7$	1	1	1	0	1	

Don't Cares

Given: the input is always between 0 and 4:

$$
\begin{array}{l|l|l|l|l|l|l|}
& I_{2} & I_{1} & I_{0} & O_{2} & O_{1} & O_{0} \\
\hline \text { Input }=0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\text { Input }=1 & 0 & 0 & 1 & 0 & 1 & 0 \\
\text { Input }=2 & 0 & 1 & 0 & 0 & 1 & 1 \\
\text { Input } & 0 & 0 & 1 & 1 & 1 & 0 \\
\text { Input } & 0 & 0 \\
\text { Input }=4 & 1 & 0 & 0 & 0 & 0 & 0 \\
\text { Input }=5 & 1 & 0 & 1 & X & X & X \\
\text { Input }=6 & 1 & 1 & 0 & X & X & X \\
\text { Input }=7 & 1 & 1 & 1 & X & X & X \\
\cline { 2 - 5 } & & & &
\end{array}
$$

Can be used to simplify logic equations.

What If I Want to Keep Counting?

What happens?

Sequential Circuits

Need a way to sequence operations.
Idea:

- Introduce devices that can hold state called state-holding elements
- Read stable inputs from state-holding elements
- Write stable outputs to state-holding elements
- Generate outputs from inputs using combinational logic

Bi-Stable Devices

Part I: state-holding devices

A simple device:

In a stable state, $A=\bar{B}$

- How do we change the state?

SR Latch

S	R	Q	\bar{Q}
0	0	Q	\bar{Q}
0	1	0	1
1	0	1	0
1	1	$?$	$?$

- SR Latch (set-reset)
- Q : stored value
- \bar{Q} : complement
- $S=1$ and $R=1$?

- When D changes, Q changes...
... immediately.
Need to control when the output changes.

Clocks

Part II: modifying state-holding elements
Introduce a free-running signal: the clock
Clock signal has a fixed cycle time (a.k.a. cycle period).
Clock frequency $=1$ cycle time

Edge Triggered Clocking

- Inputs must be stable just before the clock edge where the outputs change.

Lots of other choices... (EE 438)

First Attempt

- How does the output behave?

Master-Slave Flip-Flop

Example: 1-Bit Counter

Truth-table:

in	out
0	1
1	0

Circuit:

Finite State Machines

Basic Idea: A circuit has

- External inputs
- Externally visible outputs
- Internal state

Output and next state depend on:

- Inputs
- Current State

Two types:

- Mealy: output is a function of state and input
- Moore: output is a function of state only

Designing a Finite-State Machine

- Draw a state diagram
- Write down state transition table
- State assignment
- Determine logic equations for all flip-flops and outputs

Example: add two input bit-streams (least-significant-bit first).

The Serial Adder

- Two states: SO (carry is zero), S1 (carry is 1)
- Inputs: a and b
- Output: z

Arcs labelled with input vector and output ab/z

State Table

a	b	state	z	next state
0	0	$S 0$	0	$S 0$
0	1	$S 0$	1	$S 0$
1	0	$S 0$	1	$S 0$
1	1	$S 0$	0	$S 1$
0	0	$S 1$	1	$S 0$
0	1	$S 1$	0	$S 1$
1	0	$S 1$	0	$S 1$
1	1	$S 1$	1	$S 1$

For each input combination and state combination, write down output and next state.

State Assignment

Pick encoding of states. We have two states, so use one bit s.

- SO: $s=0$, S1: $s=1$

a	b	s	z	s^{\prime}	
0	0	0	0	0	$\bar{a} \bar{b} \bar{s}$
0	1	0	1	0	$\bar{a} b \bar{s}$
1	0	0	1	0	$a \bar{b} \bar{s}$
1	1	0	0	1	$a b \bar{s}$
0	0	1	1	0	$\bar{a} \bar{b} s$
0	1	1	0	1	$\bar{a} b s$
1	0	1	0	1	$a \bar{b} s$
1	1	1	1	1	$a b s$

Logic Equations and Circuit

$z=\bar{a} b \bar{s}+a \bar{b} \bar{s}+\bar{a} \bar{b} s+a b s$
$s^{\prime}=a b \bar{s}+\bar{a} b s+a \bar{b} s+a b s=a b+b s+a s$

What's the clock period?

