Multiple levels of representation:

- Logic equations
- Truth tables
- Gate diagrams
- Switching circuits

Boolean algebra: tool to manipulate logic equations

An algebra on a set of two elements: $\{0, 1\}$

Operations: AND, OR, complement

Identities:

$$0a = 0 1a = a aa = a a\overline{a} = 0$$

$$0 + a = a 1 + a = 1 a + a = a a + \overline{a} = 1$$

$$ab = ba a(bc) = (ab)c$$

$$a + b = b + a a + (b + c) = (a + b) + c$$

$$a(b + c) = ab + ac a + (bc) = (a + b)(a + c)$$

$$\overline{(a + b)} = \overline{a}\overline{b} \overline{(ab)} = \overline{a} + \overline{b}$$

Precedence: AND takes precedence over OR.

Proving Logic Equations

Example:
$$(a+b)(a+c) = a + bc$$

Algebraic proof?

Proof with Truth Tables:

a	b	c	a+b	a + c	LHS	bc	RHS
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Truth Tables To Logic Equations

a	b	С	out	Minterms	Maxterms
0	0	0	0	$\overline{a}\overline{b}\overline{c}$	a+b+c
0	0	1	1	$\overline{a}\overline{b}c$	$a + b + \overline{c}$
0	1	0	1	$\overline{a}b\overline{c}$	$a + \overline{b} + c$
0	1	1	0	$\overline{a}bc$	$a + \overline{b} + \overline{c}$
1	0	0	1	$a\overline{b}\overline{c}$	$\overline{a} + b + c$
1	0	1	1	$a\overline{b}c$	$\overline{a} + b + \overline{c}$
1	1	0	0	$ab\overline{c}$	$\overline{a} + \overline{b} + c$
1	1	1	0	abc	$\overline{a} + \overline{b} + \overline{c}$

Sum of Products: $\overline{a}\overline{b}c + \overline{a}b\overline{c} + a\overline{b}\overline{c} + a\overline{b}c$

Product of Sums:

 $(a+b+c)(a+\overline{b}+\overline{c})(\overline{a}+\overline{b}+c)(\overline{a}+\overline{b}+\overline{c})$

Universality: NAND and NOR

Universal: can implement any combinational function using just NAND or just NOR gates.

Earlier example:

$$\overline{a}\overline{b}c + \overline{a}b\overline{c} + \underbrace{a\overline{b}\overline{c} + a\overline{b}c}_{a\overline{b}(c+\overline{c}) = a\overline{b}}$$

One can use Boolean algebra to simplify equations.

Systematic techniques:

- Karnaugh maps
- Quine-McCluskey

(details in section next week)

"Increment input by 1, compute result mod 5"

Representation: 3-bit binary input

Given: the input is always between 0 and 4:

Can be used to simplify logic equations.

What happens?

Need a way to sequence operations.

Idea:

- Introduce devices that can hold state called state-holding elements
- Read stable inputs from state-holding elements
- Write stable outputs to state-holding elements
- Generate outputs from inputs using combinational logic

Part I: state-holding devices

A simple device:

In a stable state, $A = \overline{B}$

• How do we change the state?

S	R	Q	\overline{Q}
0	0	Q	\overline{Q}
0	1	0	1
1	0	1	0
1	1	?	?

- SR Latch (set-reset)
- \bullet Q: stored value

- \overline{Q} : complement
- S = 1 and R = 1?

D Latch

• When D changes, Q changes... ... immediately.

Need to control when the output changes.

Part II: modifying state-holding elements

```
Introduce a free-running signal: the clock
```

Clock signal has a fixed cycle time (a.k.a. cycle period). Clock frequency = 1/cycle time

• Inputs must be stable just before the clock edge where the outputs change.

Lots of other choices... (EE 438)

• How does the output behave?

Master-Slave Flip-Flop

Truth-table:

Circuit:

Basic Idea: A circuit has

- External inputs
- Externally visible outputs
- Internal state

Output and next state depend on:

- Inputs
- Current State

Two types:

- Mealy: output is a function of state and input
- Moore: output is a function of state only

Designing a Finite-State Machine

- Draw a state diagram
- Write down state transition table
- State assignment
- Determine logic equations for all flip-flops and outputs

Example: add two input bit-streams (least-significant-bit first).

The Serial Adder

- Two states: SO (carry is zero), S1 (carry is 1)
- Inputs: a and b
- Output: z

Arcs labelled with input vector and output ab/z

a	b	state	z	next state
0	0	S0	0	<i>S</i> 0
0	1	S0	1	S0
1	0	S0	1	S0
1	1	S0	0	S1
0	0	S1	1	S0
0	1	S1	0	S1
1	0	S1	0	S1
1	1	S1	1	S1

For each input combination and state combination, write down output and next state.

Pick encoding of states. We have two states, so use one bit s.

• 50: s = 0, 51: s = 1

a	b	s	z	s'	
0	0	0	0	0	$\overline{a}\overline{b}\overline{s}$
0	1	0	1	0	$\overline{a}b\overline{s}$
1	0	0	1	0	$a\overline{b}\overline{s}$
1	1	0	0	1	$ab\overline{s}$
0	0	1	1	0	$\overline{a}\overline{b}s$
0	1	1	0	1	$\overline{a}bs$
1	0	1	0	1	$a\overline{b}s$
1	1	1	1	1	abs

Logic Equations and Circuit

$$z = \overline{a}b\overline{s} + a\overline{b}\overline{s} + \overline{a}\overline{b}s + abs$$
$$s' = ab\overline{s} + \overline{a}bs + a\overline{b}s + abs = ab + bs + as$$

What's the clock period?

