What 314 Is About

Building A Computer

Information is encoded with bits: O's and 1's.
(we've already seen 2's complement numbers)
These are encoded using voltages...

+ well understood
+ easy to generate, detect
- affected by environment

But why 1's and O's only?

Digital Representation

Example: representing a $\mathrm{B} \& \mathrm{~W}$ picture:

- Black $=0 \mathrm{~V}$
- White $=1 \mathrm{~V}$
- 80% grey $=0.8 \mathrm{~V}$

Represent by scanning picture in fixed order.
Let's try doing some computation with the voltages...

Digital Representation

Flip image:
Flip back and forth...

What really happens...

Have to build system to tolerate some error (noise).
csL

Logic Levels

- Store just one bit on a wire...
- Gain reliability

Different conventions are possible

Combinational Devices

A combinational device:

- Output is a function of inputs only ("memoryless")
- Takes input to valid, stable outputs

Combinational devices restore marginally valid signals!

Example

- Input: logic 0 if $<V_{i l}$, logic 1 if $>V_{i h}$
- Output logic 0 if $<V_{o l}$, logic 1 if $>V_{o h}$

Digital View

- If input is 0 , output is 1
- If input is 1 , output is 0

Normally written in a table, like this:

\ln	Out
0	1
1	0

Called a "truth-table".

Implementation: Switching Networks

Lots of ways to build switches...

- relays
- vacuum tubes
- transistors
- ...

P-transistor

Connect \mathbf{a} and \mathbf{b} if $\mathrm{g}=0$.

N-transistor

Connect a and b if $\mathrm{g}=1$.

Switching Networks: Inverter

- Function: NOT
- Called an inverter
- Symbol:
in out

鱼號

Switching Networks: NAND

- Function: NAND
- Symbol:

Switching Networks: NOR

- Function: NOR
- Symbol:

Building Functions From Gates

- AND:

- OR:

Can specify function by describing gates, truth table, or logic equations.

Logic Equations

AND:

$$
\begin{aligned}
\text { out } & =a \cdot b \\
\text { out } & =a b \\
\text { out } & =a \wedge b
\end{aligned}
$$

OR:

$$
\begin{aligned}
& \text { out }=a+b \\
& \text { out }=a \vee b
\end{aligned}
$$

NOT:

$$
\begin{aligned}
& \text { out }=\neg i n \\
& \text { out }=\overline{i n}
\end{aligned}
$$

Logic Equations

Fun with identities:

$$
\begin{aligned}
& a+\bar{a}=1 \\
& a+0=a \\
& a+1=1 \\
& a \bar{a}=0 \\
& a \cdot 0=0 \\
& a \cdot 1=a \\
& a(b+c)=a b+a c \\
& \overline{(a+b)}=\bar{a} \cdot \bar{b} \\
& (a \cdot b)=\bar{a}+\bar{b} \\
& a+\bar{a} b=a+b
\end{aligned}
$$

Check by writing truth tables, or by manipulating logic equations.

Let's Build An Adder

Write down function:

- Two 1-bit inputs, a and b
- Two 1-bit outputs, sum and carry

Truth-table:

a	b	carry	sum
0	0	0	0
1	0	0	1
0	1	0	1
1	1	1	0

Let's Build An Adder

Sum output:

\mathbf{a}	\mathbf{b}	sum	Logic term
\mathbf{O}	\mathbf{O}	\mathbf{O}	$\bar{a} \cdot \bar{b}$
1	0	1	$a \cdot \bar{b}$
0	1	1	$\bar{a} \cdot b$
1	1	0	$a \cdot b$

Logic equation: $a \cdot \bar{b}+\bar{a} \cdot b$
Circuit:

Let's Build An Adder

Carry output:

a	b	carry	Logic term
0	0	0	$\bar{a} \cdot \bar{b}$
1	0	0	$a \cdot \bar{b}$
0	1	0	$\bar{a} \cdot b$
1	1	1	$a \cdot b$

Logic equation: $a \cdot b$
Circuit:

Let's Build An Adder

Final Circuit:

Numbers indicate the number of sequential steps from input to output (worst-case).

