
Assembling Programs

What is an assembler?

• Expands pseudo-operations into machine
instructions

• Translates text assembly language to binary
machine code

• Output: object �le
– �.o� �les (Unix)

– �.obj� �les (Windows/DOS)

Assembling Programs

.text # directive

.ent main # directive

main: la $4,$array # pseudo-op

li $5,15 # pseudo-op

...

li $4,0 # pseudo-op

jal exit

.end main # directive

.data # directive

$array: .long 51,491,3991,4,6881,-41 # directive

.globl exit .text # directive

Handling Forward References

• Two-pass assembly

– 1: allocate instructions, thus determining

addresses

– 2: assemble instructions knowing all labels

• One-pass or backpatch assembly

– 1: assemble instructions, put in zero for

unknown offsets/addresses, keep track of

un�nished instructions

– Backpatch: when labels appear or at the end
of pass 1, �ll in the un�nished instructions.

Handling Forward References

Example:
bne $1,$2,L # branch forward

sll $0,$0,0 # to label L

L: addiu $2,$3,$2

The assembler will change this to:
bne $1,$2,+1 # branch forward 1 word

sll $0,$0,0 # relative to the sll

addiu $2,$3,$2

Final machine code:
0x14220001 # bne

0x00000000 # sll

0x24620002 # addiu

Assembling Programs

Start at address zero (arbitrary).

• Keep track of where the jumps are

• Keep track of references to labels in data

• Keep track of unresolved labels (like �exit�)

All this information is saved in the object �le.

Try using mips-sgi-irix5-objdump on the .o �les
generated for your project.

Object File

• Header
• Code segment (text segment in Unix)

• Data segment

• Relocation information

• Symbol table

• Debugging information

Try using mips-sgi-irix5-nm on the .o �les generated
for your project to see the symbol table.

Code Reuse

Standard functions saved in libraries.

• On Unix: libname.a, libname.so �les

• On Windows: name.lib, name.dll �les

• Consist of a collection of object �les

The linker takes a collection of object �les and
libraries and generates an executable program.

• On Unix: ld

• On Windows: link

Linkers

• Static
– Combine object �les and libraries into one
executable

– All symbols are resolved
• Dynamic

– Generate �partial� executable
– Add library code at runtime
– Reduces executable size
– Libraries can be changed without recompilation
– One copy of shared library in memory
– Performance hit

Linkers And Loaders

• Linker
– resolves all symbols

– creates �nal executable

– stores entry point in executable

• Loader
– reads executable

– loads code and data into memory

– initializes registers, stacks, arguments

– jumps to start-up routine

– part of the operating system

ISA Alternatives

• Internal storage: registers, stacks, none

– registers: choice since 1984

– stacks: 1960s�70s

– only memory: not used successfully in 25 years

• Typical operations
– heavily used ones, little changed since 1970

– fancy instructions, underused and eliminated

• Operands
– register-register: all since 1980

– register-memory: x86, Motorola 680x0, 360

– memory-memory: VAX

Operations Supported

• Most machines have a base set like the MIPS ISA

• Recently, instructions added for multimedia and

graphics applications (Intel MMX, Sun VIS, HP

MAX-2)

Some Elaborate Operations:

• arithmetic/logical operations on bytes and
halfwords

• string operations: copy, compare

• subroutine call/return
• bit �eld operations

• data structure support (lists, queues)

Control Flow

• Condition Codes
Special bits set as a side-effect of arithmetic
operations.

add r1,r2,r3

bz label

• Condition Register
Evaluate into a register and test its value.

cmp r1,r2,r3

bgt r1, label

• Compare and Branch
bgt r1,r2, label

Accessing And Addressing Operands

• Recent architectures are load-store
architectures

• Registers are general-purpose

• Substantial differences in different
architectures

• Example: VAX

– any operand can be in a register or memory

– memory locations can be addressed with many
modes

Addressing Modes

Mode Example Meaning

register add r4,r3 r4:=r4+r3

immediate add r4,3 r4:=r4+3

displacement add r4,100(r1) r4:=r4+mem[100+r1]

register indirect add r4,(r1) r4:=r4+mem[r1]

indexed/base add r4,(r1+r2) r4:=r4+mem[r1+r2]

direct/absolute add r4,(100) r4:=r4+mem[100]

memory indirect add r4,@(r3) r4:=r4+mem[mem[r3]]

auto-increment add r4,(r3)+ r4:=r4+mem[r3];

r3:=r3+d

auto-decrement add r4,-(r3) r3:=r3-d;

r4:=r4+mem[r3]

Instruction Encoding

• Fixed
– Each instruction uses �xed number of bits

– Example: MIPS, 1 word per instruction

– Know where next instruction begins without
looking at current instruction ⇒ hardware is
simpler

• Variable
– Number of bits used per instruction varies

– Example: x86 uses 1, 2, 3, ... > 10 bytes

– Compact code (x86: avg 3 bytes)

– Hardware more complex

ISA Rationale

• Metrics

– design cost: HW and SW

– performance, power, code size

• In�uenced by

– program usage: which instructions are
frequently used?

– ef�cient HW implementation strategies

– compiler technology

• Code ef�ciency and compilation

– orthogonality: avoid special cases

– complex operations are hard to compile to

Operand Usage

Operand sizes:

7%

floating−point avg

integer avg

halfword

word

byte

doubleword

31%
74%

69%

19%

40%20% 80%60%

⇒ support 8-bit, 16-bit, 32-bit integer, and 32-bit

and 64-bit �oating-point.

Constant Usage

• Immediate sizes:

– 50% to 60% �t within 8 bits

– 75% to 80% �t within 16 bits with sign
extension

• Address displacements:

– 1% of addresses need >16 bits

– 12-16 bits suf�cient

• Conditional branch distance:

– 35% of integer branches are within -4..+3 ins

– Virtually none beyond 512 instructions

– Equality test: most frequent branch case

