
Amdahl's Law

Useful for evaluating the impact of a change. (A
general observation.)

Insight:

• Improving a feature cannot improve performance
beyond the use of the feature

Suppose we introduce a particular enhancement
that improves fraction f of execution time by factor
S. Then:

Execution timenew = ((1− f) + f/S)×Execution time



Example

Task: complete EE/CS 314 project

• Walk to lab: 15 minutes

• Work in lab: 600 minutes

• Food: 45 minutes

• Walk home: 10 minutes

• Total time = 670 minutes.

Skip meals! And sleep in the lab! :-)
⇒ 10.4% improvement

Observation: doesn't help with the time spent
working.



Other Performance Metrics

Commonly used: MIPS
(Millions of instructions per second)

MIPS =
Instruction count

Execution time × 106

Problems with MIPS as a metric:

• Instructions with different capabilities?

• Programs with different instruction mixes?

• Might not predict which machine is faster!



MIPS As A Performance Metric

Consider an optimized and unoptimized version of a
program:

Memory ALU Branch Total
Instrs. Instrs. Instrs. Instrs.

Unopt 200 M 150 M 50 M 400 M
Optimized 100 M 100 M 50 M 250 M

Memory ALU Branch CPI
cycles (2x) cycles (1x) cycles (3x)

Unopt 400 M 150 M 150 M 1.75
Optimized 200 M 100 M 150 M 1.8



MIPS As A Performance Metric

Assume a 750MHz Clock:

• MIPS (Unopt): 750/1.75 = 428.6

• MIPS (opt): 750/1.8 = 416.7

Execution time:

• Unopt: CPI × IC × 1/CR

= 1.75× 400/750 = 0.93 secs

• Opt: CPI × IC × 1/CR

= 1.8× 250/750 = 0.6 secs

MIPS doesn't predict which program is faster!
(why?)



What Is "Typical"?

• Source of serious debate

• Instruction mix can signi�cantly impact
performance

• Benchmarks for performance

– Started with simple �toy� programs
(quicksort, sieve, etc)

– Moved to synthetic benchmarks (dhrystone,

whetstone)

– Kernels (time critical parts of real programs)

– Today: SPEC (collection of standard
programs)



Summarizing Performance

Given the execution time of a number of programs,
can we come up with one �gure of merit?

Arithmetic mean:

Average time =
1

n

n∑
i=1

Execution timei

Assumes each benchmark is equally important;
long-running benchmarks dominate.

If we know workload, we can weight execution times:

Weighted average time =
∑n
i=1Wi × Execution timei∑n

i=1Wi



Normalized Performance

Pick weights to be 1/(time on a reference machine)

What if we attempt a summary using normalized
performance? Consider two machines A and B:

P1 P2 Relative to A Relative to B

secs secs P1 P2 AM P1 P2 AM

A 10 50 1 1 1 0.1 50 25

B 100 1 10 0.02 5 1 1 1

Total execution time on A: 60 secs
Total execution time on B: 101 secs

If equal runs of programs P1 and P2, A is 1.7 times
faster than B.



Geometric Mean

Can be used to combine relative measures.

Geometric Mean = n

√√√√√ n∏
i=1

Ri

P1 P2 Relative to A Relative to B

secs secs P1 P2 GM P1 P2 GM

A 10 50 1 1 1 0.1 50 2.2

B 100 1 10 0.02 0.45 1 1 1

Some unfortunate properties:

• does not track execution time!

• all improvements are equal



Harmonic Mean

Used to average rates like MIPS or MFLOPS.

Harmonic Mean =
n∑n

i=1(1/Ri)

Another way to look at it:

1

Harmonic Mean
=

∑n
i=1(1/Ri)

n

i.e. convert rate to time/task, average, convert back

to rate. Also can be weighted like arithmetic mean.



Performance Estimation

Time is the measure of performance!

• Recall how we derived the CPU performance
equation.

Typically, tradeoff between performance and cost.

• cost: parts, labor for assembly, etc.

New metric: power.

• portable devices
• want to extend battery life



Power

Where does power dissipation come from?

• Underlying implementation: transistor networks

• We can approximate these as RC circuits

• Power dissipated: CV 2, C capacitance, V voltage.

(Resistors are dissipative)

• Power dissipated when the voltage on a wire
changes.

(Quick recap: I = V
Re
−t/RC , E = CV 2)

⇒ time ∝ 1/V , energy ∝ V 2

⇒ power ∝ V 3



Power

Total power:

• Alpha 21164: 50W

• Alpha 21264: 72W

• 550 MHz Pentium III: 30.8W

• 300 MHz Mobile Pentium II: 9W

• 160 MHz StrongARM: 0.5W

Sources of power consumption:

• Inputs to combinational logic, �ip-�ops

• Signals within combinational logic

• Clock keeps changing!



Power

Minimize power consumption:

• Avoid �spurious� changes of signal values

• Turn off clock when part of the circuit not in use
clock gating

• �Modes� of operation: turn off large parts of the
chip

• Slow down clock in idle mode

• Reduce voltage in idle mode

• Only activate part of circuit used for
computation?

• Eliminate clocks?


