Real Numbers

How do we represent real humbers?

Several issues:
o How many digits can we represent?
e What is the range?
e How accurate are mathematical operations?
e Consistency...

ls a+b=0b-+ a?
Is (a+b)4+c=a+ (b+c)?
Is (a +b) —b=a?
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Fixed Point

Basic idea:
01001010

/

radix point is here

Choose a fixed place in the binary number where the
radix point is located.

For the example above, the number is
(010.01010), =2 4+2"2 4+ 274 = (2.3125)1¢

How would you do mathematical operations?




Floating-Point

Some problematic humbers....

6.023 x 1023
6.673 x 10~ 11
6.62607 x 1034

Scientific computations require a number of digits
of precision...

But they also need range
= permit the radix point to move
= floating-point numbers




Floating-Point: Scientific Notation

S|gn exponent
\+ 6.023 x 102"

77_\

mantissa radix (base)

o Number represented as:
— mantissa, exponent
e Arithmetic
— multiplication, division: perform operation on
mantissa, add/subtract exponent

— addition, subtraction: convert operands to

have the same exponent value, add/subtract
mantissas
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Floating-Point: Scientific Notation

S|gn exponent
\+ 6.023 x 102"

77_\

mantissa radix (base)

Representation:
e [EEE 754 standard
e Standardized in mid-60s
e Single precision: 32 bits
e Double precision: 64 bits

Both supported by the MIPS processor.




Floating-Point Basics

Several design issues.

— representation of mantissa (aka significand),
exponent, sign

— normal forms
6.023 x 1023 = 0.6023 x 1024 = . ..

— range and precision

— equalize exponents for add/subtract
— inexact results, rounding

— exceptional conditions/errors




IEEE Single Precision Format

s | exponent (E) mantissa (M)

1 8 23

e Uses biased exponent, actual exponent is
(E —127). 127 is called the bias (excess 127 bias)
e Number:

(—1)°(1.M) x 2F—127
when 0 < F < 255.

o The implied 1 is referred to as a hidden bit.

e Double-precision: 64 bits, 11-bit exponent, excess
1023 bias, 52-bit significand




Normalized Numbers

Significand is of the form 1.x.

Example: 0.375 = (0.011), = +(1.1)p x 272

o[ 01111101 | 10000000000000000000000
+ (125) 0.1),

Example: —3.25 = —(11.01), = —(1.101), x 21

1| 10000000 | 10100000000000000000000
- (128) (0.101),

Example: 0 = (0) =7




Zero Exponent

E = 0 is special for this reason.
e Zero significand: number is 0
e Non-zero significand: denormalized number

(—1)°(0.M) x 27126

e Denormal numbers are used to extend the range
of floating-point numbers.

° Double-precision: exponent would be —1022.

e Some hardware does not implement denormal
arithmetic, but uses software emulation

On a Sun UltraSparc, > 80x slowdown...

fosL



Adding Normalized Numbers

To calculate X + Y, assuming |Y| > | X|:

o Alignment of radix point (denormalize smaller
humber)
—d:= FExzp(Y) — Exp(X), set Exp := Exzp(Y)
— Sig(X) := Sig(X) >> d
o Add the aligned components
— Sig = Sig(X) + Sig(Y)
o Normalize the result
— Shift Sig left/right, changing Exp
— Check for overflow in Exp
— Round; repeat if not normalized




Adding Normalized Numbers

Example: 4-bit significand
1.0110 x 23 4+ 1.1000 x 22
o Aligh
1.0110 x 23
+ 0.1100 x 23

o Add
10.0010 x 23

e Normalize
1.0001 x 24




Adding Normalized Numbers

Example: 4-bit significand
1.0001 x 23 —1.1110 x 21
o Aligh
1.0001 x 23
- 0.01111 x 23

e Subtract
0.10011 x 23

e Normalize/Round
1.0011 x 22

Without extra bit, result would be 1.0010 x 22




Accuracy

IEEE standard: want result to be as accurate as
possible

e Maximum error: 5 ulp (units in last place) when
compared to infinite precision arithmetic

o Alignment step can be problematic!

e How many bits are actually needed for
arithmetic?

o Extra bit in last example: guard bit




Rounding

Standard specifies 4 different rounding modes:
e round to nearest even (default)
e round toward +oo
e round toward —oo
e round toward O

How many bits are necessary to correctly
implement the standard?

Remember, the maximum permissible error is % ulp.




Round Bit

Example: 4-bit significand
1.0000 x 29 — 1.0001 x 272
o Aligh
1.0000 x 20
- 0.010001 x 20

e Subtract
0.101111 x 29

e Normalize/Round
1.01111 x 21

1.1000 x 27! (simple round up)

Without extra bit, result would be 1.0111 x 21




Sticky Bit And Round To Nearest Even

Example: 4-bit significand
1.0000 x 29 4+ 1.0001 x 2~°

oAligl’l
1.0000 x 20
+ 0.000010/001 x 29
o Add

1.000010[/001 x 20

e Normalize/Round
1.0001 x 29, or

1.0000 x 20

Sticky bit: keep track of whether the bits “shifted
out” are non-zero.




Infinity and NaNs

Sources of error:

o If the result is too large to be represented
= 00

e What about 0/0, co — co?
= “not a number” (NaN)

e NaNs propagate
NaN +x = NaN

e Can be used to initialize floating-point variables.

Representation: exponent is all “1”s (255 or 2047). If
sighificand is 0, co; otherwise NaN.




Exceptions

e Invalid Operation
— o0 — o0, 0 X oo, ete.
— square root of a negative number
e Overflow
e Divide by Zero
e Underflow

— denormal result or non-zero result underflows
to zero

e Inexact
— rounding error is not zero




