
Real Numbers

How do we represent real numbers?

Several issues:

• How many digits can we represent?

• What is the range?

• How accurate are mathematical operations?

• Consistency...

Is a+ b = b+ a?

Is (a+ b) + c = a+ (b+ c)?

Is (a+ b)− b = a?
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Fixed Point

Basic idea:
0 1 0 0 1 0 1 0

radix point is here

Choose a �xed place in the binary number where the
radix point is located.

For the example above, the number is

(010.01010)2 = 2 + 2−2 + 2−4 = (2.3125)10

How would you do mathematical operations?



Floating-Point

Some problematic numbers....

6.023× 1023

6.673× 10−11

6.62607× 10−34

Scienti�c computations require a number of digits
of precision...

But they also need range
⇒ permit the radix point to move
⇒ �oating-point numbers



Floating-Point: Scienti�c Notation

sign
6.023 x 10

23
exponent

mantissa radix (base)

+

• Number represented as:

– mantissa, exponent

• Arithmetic

– multiplication, division: perform operation on

mantissa, add/subtract exponent

– addition, subtraction: convert operands to

have the same exponent value, add/subtract
mantissas
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Representation:

• IEEE 754 standard

• Standardized in mid-80s

• Single precision: 32 bits

• Double precision: 64 bits

Both supported by the MIPS processor.



Floating-Point Basics

Several design issues.

• Format Choices:

– representation of mantissa (aka signi�cand),
exponent, sign

– normal forms
6.023× 1023 = 0.6023× 1024 = . . .

– range and precision

• Arithmetic:

– equalize exponents for add/subtract

– inexact results, rounding

– exceptional conditions/errors



IEEE Single Precision Format

mantissa (M)S

1 8 23

exponent (E)

• Uses biased exponent, actual exponent is

(E − 127). 127 is called the bias (excess 127 bias)

• Number:

(−1)S(1.M)× 2E−127

when 0 < E < 255.

• The implied 1 is referred to as a hidden bit.

• Double-precision: 64 bits, 11-bit exponent, excess

1023 bias, 52-bit signi�cand



Normalized Numbers

Signi�cand is of the form 1.x.

Example: 0.375 = (0.011)2 = +(1.1)2 × 2−2

10

0 01111101 10000000000000000000000

+ (125) (0.1)
2

Example: −3.25 = −(11.01)2 = −(1.101)2 × 21

− (128)
10

10000000 10100000000000000000000

(0.101)
2

1

Example: 0 = (0)2 =?



Zero Exponent

E = 0 is special for this reason.

• Zero signi�cand: number is 0

• Non-zero signi�cand: denormalized number

(−1)S(0.M)× 2−126

• Denormal numbers are used to extend the range
of �oating-point numbers.

• Double-precision: exponent would be −1022.

• Some hardware does not implement denormal
arithmetic, but uses software emulation

On a Sun UltraSparc, > 80x slowdown...



Adding Normalized Numbers

To calculate X + Y , assuming |Y | ≥ |X|:

• Alignment of radix point (denormalize smaller
number)

– d := Exp(Y )− Exp(X), set Exp := Exp(Y )

– Sig(X) := Sig(X) >> d

• Add the aligned components

– Sig = Sig(X) + Sig(Y )

• Normalize the result

– Shift Sig left/right, changing Exp

– Check for over�ow in Exp

– Round; repeat if not normalized



Adding Normalized Numbers

Example: 4-bit signi�cand
1.0110× 23 + 1.1000× 22

• Align
1.0110 × 23

+ 0.1100 × 23

• Add
10.0010 × 23

• Normalize
1.0001 × 24



Adding Normalized Numbers

Example: 4-bit signi�cand
1.0001× 23 − 1.1110× 21

• Align
1.0001 × 23

- 0.01111 × 23

• Subtract
0.10011 × 23

• Normalize/Round
1.0011 × 22

Without extra bit, result would be 1.0010 × 22



Accuracy

IEEE standard: want result to be as accurate as
possible

• Maximum error: 1
2 ulp (units in last place) when

compared to in�nite precision arithmetic

• Alignment step can be problematic!

• How many bits are actually needed for
arithmetic?

• Extra bit in last example: guard bit



Rounding

Standard speci�es 4 different rounding modes:

• round to nearest even (default)

• round toward +∞
• round toward −∞
• round toward 0

How many bits are necessary to correctly
implement the standard?

Remember, the maximum permissible error is 1
2 ulp.



Round Bit

Example: 4-bit signi�cand
1.0000× 20 − 1.0001× 2−2

• Align
1.0000 × 20

- 0.010001 × 20

• Subtract
0.101111 × 20

• Normalize/Round
1.01111 × 2−1

1.1000 × 2−1 (simple round up)

Without extra bit, result would be 1.0111 × 2−1



Sticky Bit And Round To Nearest Even

Example: 4-bit signi�cand
1.0000× 20 + 1.0001× 2−5

• Align
1.0000 × 20

+ 0.000010|001 × 20

• Add
1.000010|001 × 20

• Normalize/Round
1.0001 × 20, or

1.0000 × 20

Sticky bit: keep track of whether the bits �shifted
out� are non-zero.



In�nity and NaNs

Sources of error:

• If the result is too large to be represented
⇒ ±∞

• What about 0/0, ∞−∞?

⇒ �not a number� (NaN)

• NaNs propagate
NaN +x = NaN

• Can be used to initialize �oating-point variables.

Representation: exponent is all �1�s (255 or 2047). If
signi�cand is 0, ∞; otherwise NaN.



Exceptions

• Invalid Operation

– ∞−∞, 0×∞, etc.

– square root of a negative number

• Over�ow
• Divide by Zero
• Under�ow

– denormal result or non-zero result under�ows
to zero

• Inexact
– rounding error is not zero


