Building Blocks For Arithmetic

recall the full-adder design.

ab + as + bs

— SUmMm

b—— FA
— carry

o] o]

ab + ab

(ab+ab)s + (ab + ab)s

issless
Ul H@) @
|

Integer Addition

Full-adder:
e Three input bits a, b, s

e Output: two bits sum and carry

Logic equations and gate diagram derived from
truth-tables.

What about 4-bit addition?

Integer Addition

Solution 1: write truth-table, derive logic equations,
draw gate diagram.

Solution 2:

1 1 O
1 O 1
+ O 1 1
1 0 O O

Use a number of full-adders!

Integer Addition

1 0 0 1 1 1 0 1
1 1 1 0 0
-— FA = FA = FA = FA —_—
f
I Y |
| 0 0 1
\ carry—out -
' of one stage is the least-significant
carry—in for the next bit: set carry—in to O

2
pliainm

2’s complement? Addition time for N bits?

Integer Addition

Observation: all we need is the carry-out...
= compute carry-out cout for blocks

o input: 0 O, cout = O Kill
o input: 1 1, cout = 1 generate
e input: 0 1 or 1 0, cout=carry-in (cin) propagate

cout = cn-P+ G
G = a-b
P = a+b

Block codes:
Go1 = G1 +GoP
Po1 = PoP

Integer Addition

compute block codes to

speed up carry computation.

R S N S S S N S S S T

P

< < <t <t <t G <t <t <t e
T N2 42
I R A IANEIER A
r I
| ; BLOCK CODE |«
. FA — ‘
2 carry—out for carry—in to

' | the group the group
| full-adder array | full-adder array | full-adder array l‘l_ | full-adder array j_

<.I—'| block carry calculation I' '| block carry calculation |' '| block carry calculation I' 11 block carry calculation I'

\

\

\

fosL

Subtraction

To calculate a — b, use a + (—b).
To calculate —b, flip all the bits and add 1.

= build it using an adder
| |

www eeeeeee \/ l\/ eeeee | W eeeeeeeeeeee

,,,

3 1

Combined Add/Subtract Unit

Given: one bit of control ¢, two N bit inputs a and b,
compute a+bifc=0,a—-bifc=1.

e Carry-in to the adder is c
e one input: a
e other input: b if c = 0, complement of b if c = 1.

Standard element: MUX (multiplexor)

X
y y 0
¥

Combined Add/Subtract Unit

e Hierarchical design

o Reuse components

° Replication

Shifter

4-input MUX?

Simple shifter:

ao aiaz2 as ap a1 an ap ai ao
control 1

y vyvy yvy y.Vv

3210 3210 3210 3210

Arithmetic Logic Unit (ALU)

Example ALU: given inputs a and b, and an operation
code, produce output.

Operation code:
e 000: AND
e 001: OR
e 010: NOR
e 011: ADD
e 111: SUB

How do we implement this ALU?

Selecting An Operation

2-bit decoder: 2 bit input, 4 bit output
e input: 00, output: 0001
e input: 01, output: 0010
e input: 10, output: 0100
e input: 11, output: 1000

e

YV

ALU: One Bit

Use decoder to select operation, and use combined
add/subtract unit.

ALU: Multiple Bits

Chain ALU bit slices to get an N bit ALU:

control inputs
data inputs /

I il
s et

carry chain

How can we use a better adder in the ALU?

Overflow Detection

Overflow = result of operation cannot be represented

Unsigned N-bit addition:

e Overflow = result requires more than N bits
— carry-out of MSB is 1

Signhed addition:
e Adding two positive numbers
e Adding two negative nhumbers

Overflow = carry-in to MSB # carry-out of MSB

Comparison

When is a < b?
ea<b=a—-b<0
e Subtract b from a, check sign of result

e Sign bit is MSB

When is a = b?
ea=b=a—-b=0
e Subtract b from a, check if all bits are zero
e Use NOR gate

