Building Blocks For Arithmetic

recall the full-adder design.
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Integer Addition

Full-adder:
e Three input bits a, b, s

e Output: two bits sum and carry

Logic equations and gate diagram derived from
truth-tables.

What about 4-bit addition?




Integer Addition

Solution 1: write truth-table, derive logic equations,
draw gate diagram.

Solution 2:

1 1 O
1 O 1
+ O 1 1
1 0 O O

Use a number of full-adders!




Integer Addition
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2’s complement? Addition time for N bits?




Integer Addition

Observation: all we need is the carry-out...
= compute carry-out cout for blocks

o input: 0 O, cout = O Kill
o input: 1 1, cout = 1 generate
e input: 0 1 or 1 0, cout=carry-in (cin) propagate

cout = cn-P+ G
G = a-b
P = a+b

Block codes:
Go1 = G1 +GoP
Po1 = PoP




Integer Addition

compute block codes to

speed up carry computation.
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Subtraction

To calculate a — b, use a + (—b).
To calculate —b, flip all the bits and add 1.

= build it using an adder
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Combined Add/Subtract Unit

Given: one bit of control ¢, two N bit inputs a and b,
compute a+bifc=0,a—-bifc=1.

e Carry-in to the adder is c
e one input: a
e other input: b if c = 0, complement of b if c = 1.

Standard element: MUX (multiplexor)
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Combined Add/Subtract Unit

e Hierarchical design

o Reuse components

° Replication




Shifter

4-input MUX?

Simple shifter:

ao aiaz2 as ap a1 an ap ai ao
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Arithmetic Logic Unit (ALU)

Example ALU: given inputs a and b, and an operation
code, produce output.

Operation code:
e 000: AND
e 001: OR
e 010: NOR
e 011: ADD
e 111: SUB

How do we implement this ALU?




Selecting An Operation

2-bit decoder: 2 bit input, 4 bit output
e input: 00, output: 0001
e input: 01, output: 0010
e input: 10, output: 0100
e input: 11, output: 1000
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ALU: One Bit

Use decoder to select operation, and use combined
add/subtract unit.




ALU: Multiple Bits

Chain ALU bit slices to get an N bit ALU:

control inputs
data inputs /

I il
s et

carry chain

How can we use a better adder in the ALU?




Overflow Detection

Overflow = result of operation cannot be represented

Unsigned N-bit addition:

e Overflow = result requires more than N bits
— carry-out of MSB is 1

Signhed addition:
e Adding two positive numbers
e Adding two negative nhumbers

Overflow = carry-in to MSB # carry-out of MSB




Comparison

When is a < b?
ea<b=a—-b<0
e Subtract b from a, check sign of result

e Sign bit is MSB

When is a = b?
ea=b=a—-b=0
e Subtract b from a, check if all bits are zero
e Use NOR gate




