
Combinational Logic

Multiple levels of representation:

• Logic equations

• Truth tables

• Gate diagrams

• Switching circuits

Boolean algebra: tool to manipulate logic equations

An algebra on a set of two elements: {0,1}

Operations: AND, OR, complement

Boolean Algebra

Identities:

0a = 0 1a = a aa = a aa = 0
0 + a = a 1 + a = 1 a+ a = a a+ a = 1

ab = ba a(bc) = (ab)c
a+ b = b+ a a+ (b+ c) = (a+ b) + c

a(b+ c) = ab+ ac a+ (bc) = (a+ b)(a+ c)

(a+ b) = ab (ab) = a+ b

Precedence: AND takes precedence over OR.

Proving Logic Equations

Example: (a+ b)(a+ c) = a+ bc

Algebraic proof?

Proof with Truth Tables:

a b c a+ b a+ c LHS bc RHS
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 1 0 1
1 0 1 1 1 1 0 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1

Truth Tables To Logic Equations

a b c out Minterms Maxterms

0 0 0 0 abc a+ b+ c
0 0 1 1 abc a+ b+ c
0 1 0 1 abc a+ b+ c
0 1 1 0 abc a+ b+ c
1 0 0 1 abc a+ b+ c
1 0 1 1 abc a+ b+ c
1 1 0 0 abc a+ b+ c
1 1 1 0 abc a+ b+ c

Sum of Products: abc+ abc+ abc+ abc

Product of Sums:
(a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

Universality: NAND and NOR

==

= =

Universal: can implement any combinational function
using just NAND or just NOR gates.

Minimizing Logic Equations

Earlier example:

abc+ abc+ abc+ abc︸ ︷︷ ︸
ab(c+ c) = ab

One can use Boolean algebra to simplify equations.

Systematic techniques:

• Karnaugh maps

• Quine-McCluskey

(details in section next week)

Word Problems

"Increment input by 1, compute result mod 5"

Representation: 3-bit binary input

I2 I1 I0 O2 O1 O0
Input = 0 0 0 0 0 0 1
Input = 1 0 0 1 0 1 0
Input = 2 0 1 0 0 1 1
Input = 3 0 1 1 1 0 0
Input = 4 1 0 0 0 0 0
Input = 5 1 0 1 0 0 1
Input = 6 1 1 0 0 1 0
Input = 7 1 1 1 0 1 1

Don't Cares

Given: the input is always between 0 and 4:

I2 I1 I0 O2 O1 O0
Input = 0 0 0 0 0 0 1
Input = 1 0 0 1 0 1 0
Input = 2 0 1 0 0 1 1
Input = 3 0 1 1 1 0 0
Input = 4 1 0 0 0 0 0
Input = 5 1 0 1 X X X
Input = 6 1 1 0 X X X
Input = 7 1 1 1 X X X

Can be used to simplify logic equations.

What If I Want to Keep Counting?

add 1

mod 5

What happens?

Sequential Circuits

Need a way to sequence operations.

Idea:

• Introduce devices that can hold state
called state-holding elements

• Read stable inputs from state-holding elements

• Write stable outputs to state-holding elements

• Generate outputs from inputs using
combinational logic

Bi-Stable Devices

Part I: state-holding devices

A simple device:

stable state

1

1 0

stable state

BA

0

In a stable state, A = B

• How do we change the state?

SR Latch

=
S

R

Q

Q S

R

Q

Q

S R Q Q

0 0 Q Q
0 1 0 1
1 0 1 0
1 1 ? ?

• SR Latch (set-reset)
• Q: stored value
• Q: complement
• S = 1 and R = 1?

D Latch

=

Q

Q

D S

R

D

Q

QD

Q

S

R

QD

=

• When D changes, Q changes...

... immediately.

Need to control when the output changes.

Clocks

Part II: modifying state-holding elements

Introduce a free-running signal: the clock

Clock signal has a �xed cycle time (a.k.a. cycle
period).
Clock frequency = 1/cycle time

clock

clock period

high

edge
rising

falling
edge

clock low

Edge Triggered Clocking

state−holding element

state−holding element
if outputs change here, negative edge−triggered

if outputs change here, positive edge−triggered

• Inputs must be stable just before the clock edge
where the outputs change.

Lots of other choices... (EE 438)

First Attempt

D

Q

S

R

Q
=

Q

Q

QD

CLK

=

Q

D

CLK

• How does the output behave?

CLK

Q

D

Master-Slave Flip-Flop

bubble => negative−edge triggered

X

FF=
Q

QD

Q

QD

Q

QD
D

CLK

Q

Q

CLK

Q

X

D

Example: 1-Bit Counter

Truth-table:
in out
0 1
1 0

Circuit:

Q

QD
FF

combinational
logic

CLK

inout

CLK

Finite State Machines

Basic Idea: A circuit has

• External inputs
• Externally visible outputs
• Internal state

Output and next state depend on:

• Inputs
• Current State

Two types:

• Mealy: output is a function of state and input

• Moore: output is a function of state only

Designing a Finite-State Machine

• Draw a state diagram

• Write down state transition table

• State assignment

• Determine logic equations for all �ip-�ops and
outputs

Example: add two input bit-streams
(least-signi�cant-bit �rst).

0

0 1 1 0

0 1 1 1 1

1111

serial
adder

0 0 1 0 1

0 0 1 0 1

+
1 0 1 1 0

1

The Serial Adder

• Two states: S0 (carry is zero), S1 (carry is 1)

• Inputs: a and b
• Output: z

11/1
with input vector
and output
ab/z

S1S0
11/0

10/1, 01/1

00/0

00/1

01/0, 10/0

Arcs labelled

State Table

a b state z next state
0 0 S0 0 S0
0 1 S0 1 S0
1 0 S0 1 S0
1 1 S0 0 S1
0 0 S1 1 S0
0 1 S1 0 S1
1 0 S1 0 S1
1 1 S1 1 S1

For each input combination and state combination,

write down output and next state.

State Assignment

Pick encoding of states. We have two states, so use
one bit s.

• S0: s = 0, S1: s = 1

a b s z s′

0 0 0 0 0 abs
0 1 0 1 0 abs
1 0 0 1 0 abs
1 1 0 0 1 abs
0 0 1 1 0 abs
0 1 1 0 1 abs
1 0 1 0 1 abs
1 1 1 1 1 abs

Logic Equations and Circuit

z = abs+ abs+ abs+ abs

s′ = abs+ abs+ abs+ abs = ab+ bs+ as

z

Q

QD
FF

CLK

logic
combinational

a

b

ss’

What's the clock period?

