Assembling Programs

What is an assembler?

° Expands pseudo-operations into machine
instructions

e Translates text assembly language to binary
machine code

o Output: file
— “.0” files (Unix)
— “.obj” files (Windows/D09)

Assembling Programs

.text # directive
.ent main # directive
main: la $4,$array # pseudo-op
1i $5,15 # pseudo-op
1i $4,0 # pseudo-op
jal exit
.end main # directive
.data # directive
$array: .long 51,491,3991,4,6881,-41 # directive
.globl exit .text # directive

fosL

Handling Forward References

e Two-pass assembly
— 1: allocate instructions, thus determining
addresses
— 2: assemble instructions knowing all labels
e One-pass or backpatch assembly
— 1: assemble instructions, put in zero for
unknown offsets/addresses, keep track of
unfinished instructions

— Backpatch: when labels appear or at the end
of pass 1, fill in the unfinished instructions.

fosL

Handling Forward References

Example:
bne $1,%$2,L # branch forward
sll $0,%$0,0 # to label L

L: addiu $2,%$3,%$2

The assembler will change this to:
bne $1,%$2,+1 # branch forward 1 word

sll $0,%$0,0 # relative to the sll
addiu $2,%$3,$2

Final machine code:
0x14220001 # bne

0x00000000 # sll
0x24620002 # addiu

Assembling Programs

Start at address zero (arbitrary).
o Keep track of where the jumps are
o Keep track of references to labels in data
o Keep track of unresolved labels (like “exit™)

All this information is saved in the object file.

Try using mips-sgi-irix5-objdump on the .o files
generated for your project.

Object File

e Header

e Code segment (text segment in Unix)
e Data segment

e Relocation information

e Symbol table

e Debugging information

Try using mips-sgi-irix5-nm on the .o files generated
for your project to see the symbol table.

Code Reuse

Standard functions saved in
e On Unix: 1ibname.a, libname.so files

e On Windows: namme.1lib, name.d11 files
e Consist of a collection of object files

The takes a collection of object files and
libraries and generates an executable program.

e On Unix: 1d
e On Windows: 1ink

Linkers

— Combine object files and libraries into one
executable

— All symbols are resolved

— Generate “partial” executable

— Add library code at runtime

— Reduces executable size

— Libraries can be changed without recompilation
— One copy of shared library in memory

— Performance hit

Linkers And Loaders

— resolves all symbols
— creates final executable
— stores entry point in executable

— reads executable

— loads code and data into memory

— initializes registers, stacks, arguments
— jumps to start-up routine

— part of the operating system

ISA Alternatives

e Internal storage: registers, stacks, none

— registers: choice since 1964

— stacks: 1960s5-70s

— only memory: not used successfully in 25 years
o Typical operations

— heavily used ones, little changed since 1970

— fancy instructions, underused and eliminated

e Operands
— register-register: all since 19860
— register-memory: x66, Motorola 660x0, 360

— memory-memory: YAX

fosL

Operations Supported

e Most machines have a base set like the MIPS ISA

e Recently, instructions added for multimedia and
graphics applications (Intel MMX, Sun VIS, HP
MAX-2)

o arithmetic/logical operations on bytes and
halfwords

e string operations: copy, compare

e subroutine call/return

o bit field operations

e data structure support (lists, queues)

fosL

Control Flow

e Condition Codes
Special bits set as a side-effect of arithmetic
operations.
add rl1,r2,r3
bz label

e Condition Register
Evaluate into a register and test its value.
cmp rl,r2,r3
bgt rl, label
e Compare and Branch
bgt rl,r2, label

Accessing And Addressing Operands

e Recent architectures are load-store
architectures

o Registers are general-purpose

e Substantial differences in different
architectures

e Exa mple: VAX

— any operand can be in a register or memory

— memory locations can be addressed with many
modes

Addressing Modes

Mode Example Meaning
register add r4,r3 rd:=rd+r3
immediate add r4,3 rd:=r4+3
displacement add r4,100(r1) r4:=r4+mem[100+r1]
register indirect add r4, (r1) rd:=r4+mem[r1]
indexed/base add r4, (r1+r2) ré:=rd+mem[ri+r2]
direct/absolute add r4, (100) r4 :=r4+mem[100]
memory indirect add r4,e(r3) r4:=r4+mem[mem [r3]]
auto-increment add r4, (r3)+ rd:=rd4+mem[r3];
r3:=r3+d
auto-decrement add r4,-(r3) r3:=r3-d;
r4d:=rd4+mem[r3]

fosL

Instruction Encoding

() Fixeal
— Each instruction uses fixed number of bits
— Example: MIPS, 1 word per instruction

— Know where next instruction begins without
looking at current instruction = hardware is
simpler

e Variable
— Number of bits used per instruction varies

— Example: x66 uses 1, 2, 3, ... > 10 bytes

— Compact code (x&6: avg 3 bytes)
— Hardware more complex

ISA Rationale

e Metrics
— desigh cost: HW and SW
- performance, power, code size

e Influenced by

— program usage: which instructions are
frequently used?

— efficient HW implementation strategies
— compiler technology
o Code efficiency and compilation
— orthogonality: avoid special cases
— complex operations are hard to compile to

fosL

Operand Usage

Operand sizes:

—— o
doubleword
31%
ot 743

halfword | 199 Bl floating—point avg
byte F . I integer avg

| | | |
20% 40% 60% 80%

= support &-bit, 16-bit, 32-bit integer, and 32-bit
and 64-bit floating-point.

Constant Usage

e Immediate sizes:
— B50% to ©0% fit within & bits

— 75% to 60% fit within 16 bits with sign
extension

o Address displacements:
— 1% of addresses need >16 bits
— 12-16 bits sufficient
e Conditional branch distance:
— 35% of integer branches are within -4..+3 ins
— Virtually none beyond 512 instructions
— Equality test: most frequent branch case

fosL

