Multiply/Divide

mult rs, rt # start signed multiply
multu rs, rt # start unsigned multiply
lo, bottom 32 bits
div rs, rt # start signed divide
divu rs, rt # start unsigned divide
lo = quotient, hi = remainder
mfhi rd # rd = hi
mflo rd # rd = lo
mthi rs # hi = rs
mtlo rs # lo = rs

Special registers used to handle 64-bit result.

Arithmetic Instructions

C Code
int a, b, c, d;
a=>b - (2%c + 7);
c=(a<0)7? 1: O0;

Assembly

a in reg 16, b in reg 17, c in reg 18

addu $8, $18, $18 # temp = 2*c

addiu $8, $8, 7 # temp = temp + 7

subu $16, $17, $8 # a = b - temp = b - (2*c+7)
slt $18, $16, $0 # c = (a < 0)

fosL

Logical Operations

AND: both bits must be 1 (C operator &)
O 1 0 1
O 0 1 1
O 0 0 1

OR: either bit is 1 (C operator 1)

O 1 0 1
O 0 1 1
01 11

Logical Operations

eXclusive OR: bits must be different (C operator ~)

R, O

0
1
1

Ol ¥~

NOR: OR followed by NOT

rlooQ oo o

O O =

0
1
0

Ol

Logical Operations

rd = rs & rt

rt = rs & imm

rd = “(rs | rt)

rt = imm << 16

rd = rs | rt

rt = rs | imm

rd = rt << shamt

rd = rt << (rs&Oxif)
rd = rt >>5 shamt

rd = rt >>s (rs&0x1f)
rd = rt >> shamt

rd = rt > (rs&O0xif)
rd = rs ~ rt

"~

rt = rs imm

and rd, rs, rt
andi rt, rs, imm
nor rd, rs, rt
lui rt, imm

or rd, rs, rt
orl rt, rs, imm
sll rd, rt, shamt
sllv rd, rt, rs
sra 1rd, rt, shamt
srav rd, rt, rs
srl rd, rt, shamt
srlv rd, rt, rs
xor rd, rs, rt
xori rt, rs, imm

H H H H HHEH HEHHEHHEHH

How Do | ...

Load a 16-bit constant?
addiu $8, $0, value

Load a 32-bit constant?
lui $8, (value >> 16)
ori $8, $8, (value & Oxffff)

Why no subiu?
addiu $8, $9, (-value)

Move from one register to another?
or $8, $9, $0

How Do | ...

Negate a register?
subu $8, $0, $8

Complement a register?
nor $8, $8, $0

Check for equality?
xor $8, $16, $17
sltiu $8, $8, 1

How Do | ...

Calculate absolute value of a register?
sra $9,%$8,31
xor $8,%$9,$8
andi $9,$9,1
addu $8,%9,$8

Control Flow

Instructions that modify the pc. They specify:
e New pc value
— pc-relative address
— absolute address
e When is pc modified?
— unconditional, equality between registers, etc.
e Save current pc?
— Used for function calls
— More later

Control Flow: Branches

Branch instructions:

beq rs, rt,
bgez rs, imm
bgezal rs, imm
bgtz rs, imm
blez rs, imm
bltz rs, imm
bltzal rs, imm
bne rs, rt,

imm #
E
i@
i
e
i@

#
imm #

if (rs==rt) goto L

if (rs>=0) goto L

link; if (rs>=0) goto L
if (rs>0) goto L

if (rs<=0) goto L

if (rs<0) goto L

link; if (rs<0) goto L
if (rs!=rt) goto L

pc-calculation: L = pc + 4 4 (s ext(imm) << 2)

link: $31=pc+8

Control Flow: Jumps

Jump instructions:

j tgt # goto target

jal tgt # link; goto target
jalr rs, rd # rd=pc+8; goto rs
jr rs # goto rs

pc-calculation:
target = ((pc + 4)&0x£0000000)|(tgt << 2)

op tgt

6 bits 26 bits

Jumps: absolute; Branches: pc-relative

How Do |...

Branch if register is zero?
beq $9,$0, L

Unconditional branch?
beq $0, $0, L

Branch if one register is smaller than another?
slt $8, $16,$17
bne $8, $0, L

Jump to a 32-bit address?

How Do |...

Jump to an offset > 16 bits?
bltzal $0, next

next: 1i $8, adjoffset
addu $8,8$8,8$31
jr $8

Wait, what is 1i¢
A paeudo-operation. Gets translated to either
addiu, or 1lui and ori

Summary: Instruction Formats

R-format:
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
-format:
op rs rt imm
6 bits 5 bits 5 bits 16 bits
J-format:
op tgt

6 bits 26 bits

Translating Conditional Branches

C code
int a, b;
if (a>=Db) { a=0; }

b += a;

Assembly
assume $16=a, $17=Db

slt $8,$16,$17 # set if a < b

bne $8,30,3skip # if 1, then branch

1i $16,0 # set a to zero
$skip: addu $17,$17,316 # b += a

Translating Loops

C code
int i, j;
for (i=0; i < 10; i++)
j 4= i

j++;

)

First step toward assembly: remove structure
(yikes!)

Translating Loops

Modified C cod
i = 0;
loop: if (!(i < 10)) goto finished;
j =1
1++;

goto loop;
finished: j++;

Translating Loops

Minor Optimization
1 = 0;

loop: j += 1;
1++;

if (i < 10) goto loop;
j++;

Assembly (1 in $16, j in $17)
1i $16,0

$loop: addu $17,$17,316
addiu $16,%$16,1
slti $8,$16,10
bne $8,30, $loop
addiu $17,%$17,1

set 1 =0
jo+=i

i++

compare 1 < 10

and branch
j++

H OH H H H H

Characters And Strings

Characters are stored as bytes (& bits, ASCII)

32| sPC|48|0]64 @80 /P96 [12] p
33| | (49165 A 81|Q|97|a 13| q
34| " |B60|2|66 B |82 R|98 b |14 r
35| # |51 3|67 |C|83|5|99 ¢|115]| s
47| 1 |e3|2[79]0]95] [1110|127 |DEL

Characters And Strings

String: variable-length character array, terminated
by NULL (byte O)

C 0 r N e | [NULL

67 (111({114(110 {101|108|108| O

Ox43|0x6f |0x72|0x6e|0x65[0x6¢c|0x6c(0X00

addr
addr+1
addr+2
addr+3
addr+4
addr+5
addr+6
addr+7

String Search

Problem: find the number of spaces in a string.

C code

/* s contains the address of the string */
count = 0;
while (*s) {

if (ks++ == 2) count++;

}

/* count contains the number of spaces */

First step: remove structure.

String Search

Modified C code

count = O;
start: if (!(*s)) goto done;
if (! (*s ==’ ?)) goto skipinc;
count++;
skipinc: s++;
goto start;
done:

String Search

count ih $16, s in $17

1i $16,0 # count = O

$start: 1bu $8, 0($17) # temp = *s
beq $8,$0,$done # if xs == 0 goto done
1i $9,32 # temp2 = 7
bne $8,$9,$skipinc # if xs I= 7

goto skipinc
addiu $16,%$16,1 # count++
$skipinc: addiu $17,8$17,1 # s++

beq $0,$0,$8start # goto start

$done:

