
Multiply/Divide

mult rs, rt # start signed multiply

multu rs, rt # start unsigned multiply

lo, bottom 32 bits

div rs, rt # start signed divide

divu rs, rt # start unsigned divide

lo = quotient, hi = remainder

mfhi rd # rd = hi

mflo rd # rd = lo

mthi rs # hi = rs

mtlo rs # lo = rs

Special registers used to handle 64-bit result.

Arithmetic Instructions

C Code
int a, b, c, d;

a = b - (2*c + 7);

c = (a < 0) ? 1 : 0;

Assembly
a in reg 16, b in reg 17, c in reg 18
addu $8, $18, $18 # temp = 2*c

addiu $8, $8, 7 # temp = temp + 7

subu $16, $17, $8 # a = b - temp = b - (2*c+7)

slt $18, $16, $0 # c = (a < 0)

Logical Operations

AND: both bits must be 1 (C operator &)
0 1 0 1

0 0 1 1

0 0 0 1

OR: either bit is 1 (C operator |)
0 1 0 1

0 0 1 1

0 1 1 1

Logical Operations

eXclusive OR: bits must be different (C operator ^)
0 1 0 1

0 0 1 1

0 1 1 0

NOR: OR followed by NOT
0 1 0 1

0 0 1 1

1 0 0 0

Logical Operations

and rd, rs, rt # rd = rs & rt

andi rt, rs, imm # rt = rs & imm

nor rd, rs, rt # rd = ~(rs | rt)

lui rt, imm # rt = imm << 16

or rd, rs, rt # rd = rs | rt

ori rt, rs, imm # rt = rs | imm

sll rd, rt, shamt # rd = rt << shamt

sllv rd, rt, rs # rd = rt << (rs&0x1f)

sra rd, rt, shamt # rd = rt >>s shamt

srav rd, rt, rs # rd = rt >>s (rs&0x1f)

srl rd, rt, shamt # rd = rt >> shamt

srlv rd, rt, rs # rd = rt >> (rs&0x1f)

xor rd, rs, rt # rd = rs ^ rt

xori rt, rs, imm # rt = rs ^ imm

How Do I ...

Load a 16-bit constant?
addiu $8, $0, value

Load a 32-bit constant?
lui $8, (value >> 16)

ori $8, $8, (value & 0xffff)

Why no subiu?
addiu $8, $9, (-value)

Move from one register to another?
or $8, $9, $0

How Do I ...

Negate a register?
subu $8, $0, $8

Complement a register?
nor $8, $8, $0

Check for equality?
xor $8, $16, $17

sltiu $8, $8, 1

How Do I ...

Calculate absolute value of a register?
sra $9,$8,31

xor $8,$9,$8

andi $9,$9,1

addu $8,$9,$8

Control Flow

Instructions that modify the pc. They specify:

• New pc value

– pc-relative address

– absolute address

• When is pc modi�ed?

– unconditional, equality between registers, etc.

• Save current pc?

– Used for function calls

– More later

Control Flow: Branches

Branch instructions:

beq rs, rt, imm # if (rs==rt) goto L

bgez rs, imm # if (rs>=0) goto L

bgezal rs, imm # link; if (rs>=0) goto L

bgtz rs, imm # if (rs>0) goto L

blez rs, imm # if (rs<=0) goto L

bltz rs, imm # if (rs<0) goto L

bltzal rs, imm # link; if (rs<0) goto L

bne rs, rt, imm # if (rs!=rt) goto L

pc-calculation: L = pc + 4 + (s ext(imm) << 2)

link: $31=pc+8

Control Flow: Jumps

Jump instructions:
j tgt # goto target

jal tgt # link; goto target

jalr rs, rd # rd=pc+8; goto rs

jr rs # goto rs

pc-calculation:
target = ((pc + 4)&0xf0000000)|(tgt << 2)

op

6 bits 26 bits

tgt

Jumps: absolute; Branches: pc-relative

How Do I...

Branch if register is zero?
beq $9,$0, L

Unconditional branch?
beq $0, $0, L

Branch if one register is smaller than another?
slt $8, $16,$17

bne $8, $0, L

Jump to a 32-bit address?

How Do I...

Jump to an offset > 16 bits?
bltzal $0, next

next: li $8, adjoffset

addu $8,$8,$31

jr $8

Wait, what is li?

A pseudo-operation. Gets translated to either
addiu, or lui and ori

Summary: Instruction Formats

R-format:

functrd shamtop rs rt

6 bits 5 bits5 bits 5 bits 5 bits 6 bits

I-format:

immop rs rt

6 bits 5 bits 5 bits 16 bits

J-format:

op

6 bits 26 bits

tgt

Translating Conditional Branches

C code
int a, b;

if (a >= b) { a = 0; }
b += a;

Assembly
assume $16=a, $17=b

slt $8,$16,$17 # set if a < b

bne $8,$0,$skip # if 1, then branch

li $16,0 # set a to zero

$skip: addu $17,$17,$16 # b += a

Translating Loops

C code
int i, j;

for (i=0; i < 10; i++)

j += i;

j++;

First step toward assembly: remove structure
(yikes!)

Translating Loops

Modi�ed C code
i = 0;

loop: if (!(i < 10)) goto finished;

j += i;

i++;

goto loop;

finished: j++;

Translating Loops

Minor Optimization
i = 0;

loop: j += i;

i++;

if (i < 10) goto loop;

j++;

Assembly (i in $16, j in $17)
li $16,0 # set i = 0

$loop: addu $17,$17,$16 # j += i

addiu $16,$16,1 # i++

slti $8,$16,10 # compare i < 10

bne $8,$0, $loop # and branch

addiu $17,$17,1 # j++

Characters And Strings

Characters are stored as bytes (8 bits, ASCII)

32 SPC 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s

.

47 / 63 ? 79 O 95 111 o 127 DEL

Characters And Strings

String: variable-length character array, terminated

by NULL (byte 0)

ad
d

r+
7

NULLC o r n e l l

111 114 110 101 108 108 067

0x430x6f0x720x6e0x650x6c0x6c0x00

ad
d

r

ad
d

r+
2

ad
d

r+
3

ad
d

r+
1

ad
d

r+
4

ad
d

r+
5

ad
d

r+
6

String Search

Problem: �nd the number of spaces in a string.

C code
/* s contains the address of the string */

count = 0;

while (*s) {
if (*s++ == ’ ’) count++;

}
/* count contains the number of spaces */

First step: remove structure.

String Search

Modi�ed C code
count = 0;

start: if (!(*s)) goto done;

if (!(*s == ’ ’)) goto skipinc;

count++;

skipinc: s++;

goto start;

done: ...

String Search

Assembly count in $16, s in $17

li $16,0 # count = 0

$start: lbu $8, 0($17) # temp = *s

beq $8,$0,$done # if *s == 0 goto done

li $9,32 # temp2 = ’ ’

bne $8,$9,$skipinc # if *s != ’ ’

goto skipinc

addiu $16,$16,1 # count++

$skipinc: addiu $17,$17,1 # s++

beq $0,$0,$start # goto start

$done: ...

