Assembly Language And Machine Code

C Statement:

int foo; foo = 15; foo = foo + 7;

MIPS Assembly Language:
ori $1,%$0,15 # set foo to 15
addiu $1,%$1,7 # add 7 to foo

(register 1 holds the value of foo)

MIPS Machine Instructions:
00110100000000010000000000001111
00100100001000010000000000000111

A Simple Computer

0 IO

— fetch ins at pc

22
1 decode
o update pc
rN . execute
Vfunction units
Memory

001101000000000100000000000011112
00100100001000010000000000000111
pC — ...

Number Representation

Decimal: base 10, digits: 0°, 1, ..., "9’
(683)19p =6-1024+8-101 +3.100

Binary: base 2, digits: '0°, 1’

(1101)o= 1-23 + 1.22 4+ 0-21 4+ 1.20
= 8 4+ 4 4+ 0 + 1
= (13)10

Hexadecimal: base 10, digits: 'O’ .. °9",’a’ .. 'f
2a’=10,b’=11,c’=12,'d’ =13, =14,F =15
(a6)16 = 10-161 +6-16°9 = (166) 10
Often write 0xa6 instead of (a6)1¢.

fosL

Number Representation

A Useful Trick: Converting between hexadecimal
(hex) and binary.

0xe3f8 = 14.163+3.162+4+15-161 +8.16°
14.- (23 +3- (22 +15- (2H)1 +8- (24)°
(1110)5 - (2%4)3 + (0011), - (24)2

+ (1111)5 - (2% + (1000)5 - (24)°

(1110 0011 1111 1000)>
Oxe 0x3 Oxf 0x8

1 hex digit = 4 bits

Negative Numbers

Various representations possible for signed binary
arithmetic.

Sign-Magnitude: reserve left-most bit for the sign
+ Easy to negate a number
- Multiple zeros
- Arithmetic is more complicated

Example: 4-bit numbers
o) (—|—5)10 iS given by 0 101
e (—5)10i5 given by 1 101

Negative Numbers

2's complement
o Flip all the bits and add 1
+ No wasted bits
+ Arithmetic works out
- Asymmetric range for positive and negative
humbers

Example: 4-bit numbers
e (+5)10 is given by 0101
e Flip bits: 1010
e Add 1: 1011

Why 2’s complement?

Let b be the integer we're trying to negate. (N-bits)
o Flip bits = subtract b from 111..-1

N 1s
1111
- 0101
1 010
111...1=2N -1
N 1s
1 00 00O
- 0 001
1111
o Add 1

result = 2NV — b

Why 2’s complement?

For 2’s complement: —b is represented by 2V — b.

.. which is —b modulo 2.

= we can use the same computation structure to
add positive and negative numbers if we use modulo
2N arithmetic.

Sigh Extension

How do | convert an 8&-bit number into a 16-bit
humber?

e If the number is non-negative, left-most bit is O
= add Os to the left

o If the number is —b, then it corresponds to 28 — b,
216 _p = (28 —b) + (216 _ 28)
= add 1s to the left

In both cases,
Known as “sigh-extension”

Instruction Set Architecture

Processor

Instruction Set
Architecture

ste

LLogic Design
. 0x00000000
jal _getnext 0x34040000
ori $a0, $0,0 0x8c480008
lw $t 0, 8($v0) 0x00000000
lw $t0, 12($t 0) 8@888%32
Fieqss?tloho' 0x401834 X 00000000

beq $t 0, $t 1, 0x4018a0 \Sﬁ?fgggggg

Assembly Machine
Language Instructions

ISA: operands, data types, operations, encoding

MIPS Instruction Set Architecture

e Load/store architecture
— Data must be in registers to be operated on
— Keeps hardware 5imple

— Memory operations only transfer data
between registers and memory

° Empha5i5 oh efficient implementation

o Very simple: basic operations rather than
support for any specific language construct

fosL

MIPS Data Representation

Integer data types:
e Byte: & bits
e Half-words: 16 bits
e Words: 32 bits
e Double-words: 64 bits (nhot in basic MIPS 1)

MIPS supports operations on signed and unsigned
data types.

Converting a byte to a word? Sign-extend!

MIPS Instruction Types

e Arithmetic/Logical
— three operands: result + two sources
— operands: registers, 16-bit immediates

— sighed + unsigned operations

e Memory access
— load/store between registers and memory
— half-word and byte operations

e Control flow

— conditional branches, fixed offsets and
pc-relative

Data Storage

o 32 52-bit registers, register O is always zero.

e 232 bytes of memory

e hi, lo: special 32-bit registers for multiply/divide
® pc, program counter

o 16 floating-point registers

e Byte addressing: can address individual bytes of
memory

e How do bytes map into words?

Byte Ordering And Alignment

Oxfffffffc

. . Alignment

0x00000008
0x00000004
0x00000000

Il I
_;

0 1 2 3 A/big_endian

msb Isb

0w little—endian

“On Holy Wars and a Plea for Peace”, Cohen (1980)

Data Movement

Load/store architecture
e Read data from memory: “load”
e Write data to memory: “store”

Load:
e Normally overwrites entire register
e Loading bytes/half-words
— uhsigned: zero-extend
— sighed: sigh-extend

Store: writes bottom byte/bottom half-word/word
of register to memory.

Addressing Modes For Data Movement

How do we specify an address in memory?
e Instructions compute effective address (EA)

MIPS: One addressing mode for loads/stores
e register indirect with immediate offset
e EA = register + signed immediate

Example:
1h $5, 8($29)
1w $7, -12($29)
1bu $7, 1($30)

Requires aligned addresses!

Addressing Modes

Other architectures have more than one way to
specify EA.

e EA = sighed immediate

e EA = register

e EA = register + k x register (k=1,2,4,5)

e EA = register + k x register + signed immediate

MIPS favors simplicity = fast hardware

MIPS Load/Store Instructions

1b rt, imm(rs) # load byte (signed)
lbu rt, imm(rs) # load byte (unsigned)
1h rt, imm(rs) # load half-word (signed)
lhu rt, imm(rs) # load half-word (unsigned)
lw rt, imm(rs) # load word
sb rt, imm(rs) # store byte
sh rt, imm(rs) # store half-word
sw rt, imm(rs) # store word
op rs rt imm
6 bits 5 bits 5 bits 16 bits

MIPS Load/Store Instructions

C Code
foo = x[3]; x[4] = foo + 1;

Assembly

1w $16, 12(3$17) reg 16 contains foo, reg 17
contains the address of x
add 1 to foo

store into x[4]

addiu $8, $16, 1
SW $8, 16($17)

H H H =

Integer Arithmetic Operations

e Constants
— register zero is always zero
— immediates are 16-bits wide
e Sighed + unsigned operations
e Logical operations
— bitwise operations on operands
— always unsigned

Integer Arithmetic Operations

add rd, rs, rt # rd = rs + rt
addi rt, rs, imm # rt = rs + s ext(imm)
addiu rt, rs, imm # rt = rs + s ext(imm)
addu rd, rs, rt # rd = rs + rt
slt rd, rs, rt # rd = (rs <5 rt)
slti rt, rs, imm # rt = (rs <5 s ext(imm))
sltiu rt, rs, imm # rt = (rs < s ext(imm))
sltu rd, rs, rt # rd = (rs < rt)
sub rd, rs, rt # rd = rs - rt
subu rd, rs, rt # rd = rs - rt
op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

