
Assembly Language And Machine Code

C Statement:
int foo; foo = 15; foo = foo + 7;

MIPS Assembly Language:
ori $1,$0,15 # set foo to 15

addiu $1,$1,7 # add 7 to foo

(register 1 holds the value of foo)

MIPS Machine Instructions:
00110100000000010000000000001111

00100100001000010000000000000111

A Simple Computer

r1

00110100000000010000000000001111
00100100001000010000000000000111

fetch ins at pc
decode

...

...

Memory

pc

execute
update pc

function units

rN

r0
22

control

0

Number Representation

Decimal: base 10, digits: '0', '1', ..., '9'

(683)10 = 6 · 102 + 8 · 101 + 3 · 100

Binary: base 2, digits: '0', '1'

(1101)2 = 1 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 8 + 4 + 0 + 1
= (13)10

Hexadecimal: base 16, digits: '0' .. '9', 'a' .. 'f'

'a' = 10, 'b' = 11, 'c' = 12, 'd' = 13, 'e' = 14, 'f' = 15

(a6)16 = 10 · 161 + 6 · 160 = (166)10

Often write 0xa6 instead of (a6)16.

Number Representation

A Useful Trick: Converting between hexadecimal
(hex) and binary.

0xe3f8 = 14 · 163 + 3 · 162 + 15 · 161 + 8 · 160

= 14 · (24)3 + 3 · (24)2 + 15 · (24)1 + 8 · (24)0

= (1110)2 · (24)3 + (0011)2 · (24)2

+ (1111)2 · (24)1 + (1000)2 · (24)0

= (1110︸ ︷︷ ︸
0xe

0011︸ ︷︷ ︸
0x3

1111︸ ︷︷ ︸
0xf

1000︸ ︷︷ ︸
0x8

)2

1 hex digit = 4 bits

Negative Numbers

Various representations possible for signed binary
arithmetic.

Sign-Magnitude: reserve left-most bit for the sign

+ Easy to negate a number

- Multiple zeros

- Arithmetic is more complicated

Example: 4-bit numbers

• (+5)10 is given by 0 101

• (−5)10 is given by 1 101

Negative Numbers

2's complement

• Flip all the bits and add 1

+ No wasted bits

+ Arithmetic works out

- Asymmetric range for positive and negative
numbers

Example: 4-bit numbers

• (+5)10 is given by 0101

• Flip bits: 1010

• Add 1: 1011

Why 2's complement?

Let b be the integer we're trying to negate. (N-bits)

• Flip bits ≡ subtract b from 111 · · ·1︸ ︷︷ ︸
N 1s

1 1 1 1
- 0 1 0 1

1 0 1 0

111 · · ·1︸ ︷︷ ︸
N 1s

= 2N − 1

1 0 0 0 0
- 0 0 0 1

1 1 1 1

• Add 1

result = 2N − b

Why 2's complement?

For 2's complement: −b is represented by 2N − b.

... which is −b modulo 2N .

⇒ we can use the same computation structure to
add positive and negative numbers if we use modulo
2N arithmetic.

Sign Extension

How do I convert an 8-bit number into a 16-bit
number?

• If the number is non-negative, left-most bit is 0

⇒ add 0s to the left

• If the number is −b, then it corresponds to 28 − b.
216 − b = (28 − b) + (216 − 28)

⇒ add 1s to the left

In both cases, replicate left-most bit

Known as �sign-extension�

Instruction Set Architecture

0x0c004841
0x00000000
0x34040000
0x8c480008
0x00000000
0x8d08000c
0x10001834
0x00000000
0x24090004
0x11090002
...

jal _getnext
ori $a0,$0,0
lw $t0,8($v0)
lw $t0,12($t0)
beq $t0,0,0x401834
li $t1,4
beq $t0,$t1,0x4018a0

Instruction Set
Architecture

 Language
Assembly

Instructions
Machine

Logic Design

Design
Processor

ISA: operands, data types, operations, encoding

MIPS Instruction Set Architecture

Basic features:

• Load/store architecture
– Data must be in registers to be operated on

– Keeps hardware simple

– Memory operations only transfer data
between registers and memory

• Emphasis on ef�cient implementation

• Very simple: basic operations rather than
support for any speci�c language construct

MIPS Data Representation

Integer data types:

• Byte: 8 bits

• Half-words: 16 bits

• Words: 32 bits

• Double-words: 64 bits (not in basic MIPS I)

MIPS supports operations on signed and unsigned
data types.

Converting a byte to a word? Sign-extend!

MIPS Instruction Types

• Arithmetic/Logical

– three operands: result + two sources

– operands: registers, 16-bit immediates

– signed + unsigned operations

• Memory access

– load/store between registers and memory

– half-word and byte operations

• Control �ow
– conditional branches, �xed offsets and

pc-relative

Data Storage

• 32 32-bit registers, register 0 is always zero.

• 232 bytes of memory

• hi, lo: special 32-bit registers for multiply/divide

• pc, program counter

• 16 �oating-point registers

Memory access:

• Byte addressing: can address individual bytes of
memory

• How do bytes map into words?

Byte Ordering And Alignment

Alignment

0x00000008

0x00000000

0x00000004

0xfffffffc

13 0

3210 big−endian

2
little−endian

lsbmsb

�On Holy Wars and a Plea for Peace�, Cohen (1980)

Data Movement

Load/store architecture

• Read data from memory: �load�

• Write data to memory: �store�

Load:

• Normally overwrites entire register

• Loading bytes/half-words

– unsigned: zero-extend

– signed: sign-extend

Store: writes bottom byte/bottom half-word/word
of register to memory.

Addressing Modes For Data Movement

How do we specify an address in memory?
• Instructions compute effective address (EA)

MIPS: One addressing mode for loads/stores

• register indirect with immediate offset

• EA = register + signed immediate

Example:
lh $5, 8($29)

lw $7, -12($29)

lbu $7, 1($30)

Requires aligned addresses!

Addressing Modes

Other architectures have more than one way to
specify EA.

• EA = signed immediate

• EA = register

• EA = register + k × register (k=1,2,4,8)

• EA = register + k × register + signed immediate

MIPS favors simplicity ⇒ fast hardware

MIPS Load/Store Instructions

lb rt, imm(rs) # load byte (signed)

lbu rt, imm(rs) # load byte (unsigned)

lh rt, imm(rs) # load half-word (signed)

lhu rt, imm(rs) # load half-word (unsigned)

lw rt, imm(rs) # load word

sb rt, imm(rs) # store byte

sh rt, imm(rs) # store half-word

sw rt, imm(rs) # store word

immop rs rt

6 bits 5 bits 5 bits 16 bits

MIPS Load/Store Instructions

C Code
foo = x[3]; x[4] = foo + 1;

Assembly

lw $16, 12($17) # reg 16 contains foo, reg 17

contains the address of x

addiu $8, $16, 1 # add 1 to foo

sw $8, 16($17) # store into x[4]

Integer Arithmetic Operations

• Constants
– register zero is always zero

– immediates are 16-bits wide

• Signed + unsigned operations

• Logical operations
– bitwise operations on operands

– always unsigned

Integer Arithmetic Operations

add rd, rs, rt # rd = rs + rt

addi rt, rs, imm # rt = rs + s ext(imm)

addiu rt, rs, imm # rt = rs + s ext(imm)

addu rd, rs, rt # rd = rs + rt

slt rd, rs, rt # rd = (rs <s rt)

slti rt, rs, imm # rt = (rs <s s ext(imm))

sltiu rt, rs, imm # rt = (rs < s ext(imm))

sltu rd, rs, rt # rd = (rs < rt)

sub rd, rs, rt # rd = rs - rt

subu rd, rs, rt # rd = rs - rt

functrd shamtop rs rt

6 bits 5 bits5 bits 5 bits 5 bits 6 bits

