Solutions

1. Short Questions [20 pts] (parts a–d)

(a) [5 pts] Consider the following function definition:
\[
\text{fun } f \ x \ y = y \ x \ x
\]
Pick the appropriate type for \(f \) from the list below:

A. \(\text{'a } \to (\text{'a } \to \text{'a } \to \text{'b }) \to \text{'b} \)
B. \(\text{'a } \to (\text{'a } \to \text{'b }) \to (\text{'a } \to \text{'b}) \)
C. \(\text{'a } \to (\text{'a } \to \text{'b }) \to \text{'b} \)
D. \(\text{'a } * (\text{'a } \to \text{'b }) \to (\text{'b } \to \text{'a}) \)

Answer: (A) \(\text{'a } \to (\text{'a } \to \text{'a } \to \text{'b }) \to \text{'b} \).

(b) [5 pts] Show the evaluation of the expression below using the substitution model:

\[
\begin{align*}
\text{let } \text{fun } \text{foo } & (x: \text{int}) \ (y: \text{int}) : \text{int } = \ x * \ y \\
\text{fun } \text{bar } & (x: \text{int} \to \text{int}, \ y: \text{int}) : \text{int } = \ x \ y \\
\text{in } & \text{bar}(\text{foo } 2, \ 3) \\
\text{end}
\end{align*}
\]

\[
\begin{align*}
&\rightarrow \text{let } \text{fun bar } (x: \text{int} \to \text{int}, \ y: \text{int}) : \text{int } = \ x \ y \\
&\text{in } \text{bar }((\text{fn } x \Rightarrow \text{fn } y \Rightarrow x * y) \ 2, \ 3) \text{ end} \\
&\rightarrow (\text{fn } (x, y) \Rightarrow x \ y) \ ((\text{fn } x \Rightarrow \text{fn } y \Rightarrow x * y) \ 2, \ 3) \\
&\rightarrow (\text{fn } (x, y) \Rightarrow x \ y) \ (\text{fn } y \Rightarrow 2 * y, \ 3) \\
&\rightarrow (\text{fn } y \Rightarrow 2 * y) \ 3 \\
&\rightarrow 2 * 3 \\
&\rightarrow 6
\end{align*}
\]

(c) [5 pts] Which of the following equalities are true:

(A) \([\]::x = [x]\) \quad (D) \(x::[] = x\)
(B) \([\]::x = [[] , [x]]\) \quad (E) \(x::[] = [x]\)
(C) \([\]::x = [[] , x]\) \quad (F) \(x::[] = [x, [\]]\)

Only (E) is true.

(d) [5 pts] Order the following functions in ascending order with respect to their order of growth:

\(n^{2.1} \quad n \log (n^2) \quad 2n^2 + n \quad (\log n)^2\).

Answer: \((\log n)^2 \quad n \log (n^2) \quad 2n^2 + n \quad n^{2.1}\)
2. List Manipulations [24 pts] (parts a–b)

(a) [12 pts] Consider a function \texttt{remthree} that removes every third element from a list. For instance:
\[
\text{remthree } [1, 2, 3, 4, 5, 6, 7, 8] = [2, 3, 5, 6, 8]
\]
Use pattern matching to implement function \texttt{remthree}.

\textbf{Answer:}

\begin{verbatim}
fun remthree(l: int list) : int list =
 case l of
 | [] => []
 | [_] => []
 | [__,x] => [x]
 | _::_:y:::t => x::y:::remthree(t)
\end{verbatim}

(b) [12 pts] Consider a function that removes all consecutive duplicates from a list. For instance:
\[
\text{remdups } [1, 2, 2, 3, 3, 3, 1, 1] = [1, 2, 3, 1]
\]
The function can be implemented using fold, as follows:

\begin{verbatim}
val remdups : int list -> int list = foldr func []
\end{verbatim}

where \texttt{func} is an appropriate function and \texttt{foldr} has the standard definition:

\begin{verbatim}
fun foldr(f: 'a * 'b -> 'b) (v:'b) (l:'a list) =
 case l of [] => v
 | h::t => f(h, foldr f v t)
\end{verbatim}

Write the code for function \texttt{func}. Make sure you indicate the types of the argument(s) and return value in the function definition.

\textbf{Answer:}

\begin{verbatim}
fun func(x:int, a:int list): int list =
 case a of [] => [x]
 | h::t => if x = h then a else x::a
\end{verbatim}

3. Data Abstraction [24 pts] (parts a–d)

The following defines a data abstraction interface and a partial implementation of this interface:

\begin{verbatim}
signature INTSET = sig
 (* A "set" is a set of integer numbers.
 * Examples: \{3, 1, 2\}, \{\text{-}1, 1\}, \{\} *)
 type set
\end{verbatim}
(* empty() returns an empty set. *)
val empty : unit -> set
(* add(s,n) adds element n to set s. *)
val add : set * int -> set
(* ... *)
val oper : set * set -> set
(* size(s) is the number of elements in the set s. *)
val size : set -> int

end

structure Set : INTSET = struct
 type set = int list

 fun empty() = []
 fun add(s, n) = raise Fail "unimplemented!"
 fun size l = List.length l

 fun oper(s1, s2) =
 case (s1, s2) of
 (([],_ | (_, [])) => []
 | (h1::t1,h2::t2) => case Int.compare(h1,h2) of
 EQUAL => h1::oper(t1,t2)
 | LESS => oper(t1,s2)
 | GREATER => oper(s1,t2)

end

(a) [4 pts] Write an appropriate specification for function oper, specifying the
 operation that it implements.

Answer: (* oper(s1,s2) returns the intersection of sets s1 and s2 *)

(b) [6 pts] Write an appropriate abstraction function and representation invariant
 for this implementation.

Answer: (* AF: the list [x1,x2,..,xn] represents the set \{x1,x2,..,xn\}.
 RI: the list [x1,x2,..,xn] is sorted in increasing order
 and contains no duplicates. *)

(c) [4 pts] Explain why the invariant must hold for this implementation.

Answer: The list must contain no duplicates to ensure that size() works cor-
 rectly. The list must be sorted so that oper() correctly computes set intersection.

(d) [10 pts] Write the appropriate code for function add.

Answer:
fun add(s: set, n: int): set =
 case s of
 nil => [n]
 | h::t => (case Int.compare(n,h) of
 LESS => n::s
 | EQUAL => s
 | GREATER => h::add(t,n))

4. Induction [16 pts]

Consider a tree data type and two functions, edges and nodes, defined for this type:

datatype tree = Nil | Node of int * tree * tree

fun nodes(l: tree): int =
 case l of Nil => 0
 | Node(_, l, r) => 1 + nodes(l) + nodes(r)

fun edges(l: tree): int =
 case l of Nil => ~1
 | Node(_, l, r) => 2 + edges(l) + edges(r)

Use induction to prove that nodes(t) = edges(t) + 1 for all trees. Make sure you clearly show all of the steps in your proof, and state the kind of induction you’re using.

Answer:

Claim: Let P(n) be the statement: nodes(t) = edges(t) + 1 where t is a tree with n nodes, such that $n \geq 0$.

Proof: by strong induction on n, the number of nodes in the tree.

Base Case: P(0) is the statement: nodes(Nil) = 0 and edges(Nil) = 1. Thus nodes(Nil) = 1 + edges(Nil), so the base case holds.

Inductive Step: Assume P(k) holds for all $k \leq n$. We prove P(n+1). By the substitution model, nodes(t) evaluates to 1 + nodes(l) + nodes(r) where l and r are subtrees with at most n nodes. By our induction hypothesis, nodes(l) = edges(l) + 1 and nodes(r) = edges(r) + 1.

Putting these together, we have nodes(t) = 1 + (edges(l) + 1) + (edges(r) + 1) = 3 + edges(l) + edges(r).

Also by the substitution model, edges(t) evaluates to 2 + edges(l) + edges(r). So now we have nodes(t) = edges(t) + 1. Therefore P(n+1) holds.

Conclusion: We have proved P(n) implies P(n+1). Therefore nodes(t) = edge(t) + 1 for $n \geq 0$, as claimed.
5. **Complexity** [16 pts] (parts a–b)

Consider the following implementations for an exponentiation function that raises a number \(x \) to a power \(n \):

```plaintext
(* Returns \( x^n \). Requires \( n \geq 0 \). *)
fun exp1 (x:int, n:int) =
  case (n, n mod 2) of
  (0, _) => 1
  | (_, 0) => x * x * exp1(x, n - 2)
  | (_, _) => x * exp1(x, n - 1)

(* Returns \( x^n \). Requires \( n \geq 0 \). *)
fun exp2 (x:int, n:int) =
  case (n, n mod 2) of
  (0, _) => 1
  | (_, 0) => exp2 (x * x, n div 2)
  | (_, _) => x * exp2(x, n - 1)
```

(a) [10 pts] For each of the functions above, derive recurrence relations describing their running time \(T(n) \), where \(n \) is the second argument of each function.

Answer: Relations for \(\text{exp1} \):

\[
\begin{align*}
T(0) &= c_0 \\
T(2n) &= T(2(n-1)) + c_1 \\
T(2n+1) &= T(2n) + c_2
\end{align*}
\]

Combining the constants in the last two relations we get the following system of recurrences:

\[
\begin{align*}
T(0) &= c_0 \\
T(n) &= T(n-1) + c_3
\end{align*}
\]

Relations for \(\text{exp2} \):

\[
\begin{align*}
T(0) &= c_0 \\
T(2n) &= T(n) + c_1 \\
T(2n+1) &= T(2n) + c_2
\end{align*}
\]

The last recurrence can be rewritten:

\[
T(2n+1) = T(2n) + c_2 = T(n) + c_1 + c_2 = T((2n+1)/2) + c_1 + c_2
\]

The recurrence for \(T(2n) \) can be rewritten:

\[
T(2n) = T(n) + c_1 = T((2n)/2) + c_1
\]
Combining these relations we get the following system:

\[
\begin{align*}
T(0) &= c_0 \\
T(n) &= T(n/2) + c_3
\end{align*}
\]

(b) [6 pts] State the asymptotic complexity of each of the two functions with respect to \(n \), their second argument. You don’t need to prove your results.

Answer:

Answer: Function exp1 is \(O(n) \). Function exp2 is \(O(\log n) \).