
CS 312 Problem Set 5: Concurrent Language Interpreter

Due: 11:00 PM, April 14, 2005

1 Introduction

In this assignment you will build an interpreter for a funtional language called CL, with concur-
rency and imperative features. A CL program has multiple processes executing at the same time.
You can think of the concurrent processes as robots. Each robot executes its own CL code, and
has its own local memory. Robots can communicate to each other through a global shared mem-
ory. They can also start off other robots, or wait for the spawned robots to finish. Finally, there is
an outside world that provides additional functionality (for instance, I/O support), and robots can
request services from this outside world.

For Problem Set 5, you will implement an interpreter for programs written in CL. More pre-
cisely, you will implement the evaluation of CL expressions, including the concurrent constructs.
You will also implement a garbage collector to manage your local and global memories. In the
next assignment, you will use your interpreter to implement a game that uses the robots.

2 Changes to problem set

• [Apr 1] Small change in the specification for spawn trees: a) you need a functionsingleton

that builds a tree with the root process (instead ofempty); and b) when a process terminates,
its child processes should not be removed from the spawn tree.

3 Instructions

You will do this problem set by modifying the source files provided in CMS, and submitting the
program that results. As before, your programs must compile without any warnings. Programs
that do not compile or compile with warnings will receive an automatic zero. All files submitted
shouldnot have any lines longer than 80 characters, and ideally all lines should be less than 78
characters long.

We will be evaluating your problem set on several different criteria: the specifications you write
(where appropriate), the correctness of your implementation, code style, efficiency, and validation
strategy. Correctness is worth about two thirds of the total score, and the importance of the other
criteria varies from part to part.

Note that you will be building on your PS5 solution for PS6, so we strongly recommend you
to start early on PS5 and understand the code given to you early. PS5 and PS6 are also partner
assignments. You are expected to find a partner to do this assignment with by April 1. You can
continue working with the partner from PS4, or find somebody else. In either case, you must sign
up in CMS with that partner. If CMS shows that you don’t have a partner by April 1, we will
automatically pair you up with someone else in the class at that time.

1



4 The CL language

The CL language has some interesting features. First, it is a concurrent language in which mul-
tiple processes can be executing simultaneously. Second, it has imperative features that allow
updating mempory locations. Third, processes can get additional services (including input/output
operations) from an external world.

A robot can launch another robot using the expressionspawn e. The expressione provides
the program that the newly created robot is supposed to execute. A robot can then wait for all its
spawned children to finish usingsync.

There are two different kinds of memories that the robots can read or write. Each robot has its
own local memory, which can only be used by that robot. Local memory is allocated withlref e
expressions. In addition, there is aglobal memorythat is global and shared by all the robots.
Robots can communicate with each other by modifying locations in the global memory. Global
memory is allocated withgref e expressions.

Robots can request the external world to perform actions, usually using an expression of the
form do e. This expression is evaluated by sending the result ofe to the external world. Different
possible values ofe are interpreted as requests to perform different actions. In this problem set,
thedo e expression will be used for I/O operations. For example, the expressiondo 0 causes the
external world to ask the user to input a number, which is returned as a result of the expression.

The behavior of the external world is not specified by the CL language. We have given you
one possible implementation of the external world, but it will be modified in PS6 to allow robots
to sense and interact with their environment in many more ways.

4.1 Expressions

A CL program for a single robot can contain the following expressions:

n An integer constant, as in SML. Examples:∼3, 0, 2.
(e1, e2) A pair. Evaluates to the value(v1, v2) wherev1 andv2 are the respective

results of evaluating the expressionse1 ande2.
unope Returnsunopapplied to the result of evaluation ofe. unopis one of the fol-

lowing unary operators:∼ (negates an integer), andrand (returns a random
number between 1 andn wheren is the result of evaluation ofe).

e1 binope2 Applies binary operatorbinop to the results of evaluations of the two ex-
pressions. Bothe1 ande2 must evaluate to an integer.binop is one of the
following operators:+,−, ∗, /, mod, <, =. For the last two operators the
result will be 1 if the comparison is true, and 0 otherwise.

e1 ; e2 A sequence of expressions. It is evaluated similarly to an ML sequence.
First expressione1 is evaluated, possibly creating side effects (modifying
memories). After that the result ofe1 is thrown away and expressione2 is
evaluated.

let id = e1 in e2 Binds the result of evaluatinge1 to the identifierid and uses the binding to
evaluatee2. Identifiers start with a letter and consist of letters, underscores,
and primes.

2



fn id => e Anonymous function with the argumentid and the bodye. Note that func-
tions are values, so the bodye is not evaluated until an argument is supplied
to the function.

id Identifier. Must be contained inside alet or fn expression with the same
identifier name, otherwise unbound identifier error will occur.

e1 e2 Function application. Evaluates expressione1 to a functionfn id => e,
expressione2 to a valuev2, bindsv2 to the identifierid and uses the binding
to evaluatee.

if e then e1 else e2 Similar to the MLif/then/else expression except that the result of ex-
pressione is tested for being greater than 0 (there are no booleans in CL).
Examples:if 1 then 1 else 2 returns1, if 4<3 then 1 else 2 re-
turns2.

typecase e of
(id, id′) => e1

| int id => e2

| loc id => e3

| fun id => e4

| any id => e5

First evaluates expressione to a value. If the result is a pair, it binds the
elements of the pair toid andid’ in the case for pairs. Otherwise, it binds
the the result toid in the appropriate case. The caseany matches any value.
It then evaluates the expressionei of the matched case.

Each of the cases is optional and can occur at most once. The case forany

is allowed only if at least two of the other cases are missing. As in ML, all
cases must be covered. The expression “typecase e1 of any id => e2”
is equivalent to “let id = e1 in e2”.

Note that lists can be emulated in CL using pairs of pairs. Like pattern
matching in ML, thetypecase construct gives the ability to distinguish
between the head and the tail of a list.

delay e by n Delays the evaluation ofe by n evaluation steps. The numbern must be
an integer constant greater or equal to 1. At each evaluation step,n is de-
creased; when it reaches 1, the expression reduces toe.

lref e Similar to the ML operationref. First expressione is evaluated to a value
v. After that a new locationloc is allocated in the robot’s local memory
and valuev is stored at this location. The return result of the expression is
locationloc which can be viewed as a memory address.

gref e Similar tolref except that the new location is allocated in the global shared
memory. Before allocating the location the result ofe is checked to ensure
that it satisfies the “global memory invariant” (see section 4.3).

! e Evaluates expressione to locationloc and returns the value stored at this
location.

e1 := e2 Evaluates expressione1 to a locationloc1 and expressione2 to a valuev2.
After that replaces the value at the locationloc1 with v2. The return result
of this expression isv2. If loc1 is a location in the global memory, then the
valuev2 is checked for the “global memory invariant” before assigning (see
section 4.3).

lock e1 e2 This expression evaluatese1 to a location,loc, and, except as noted below,
returnsloc. If loc is in local memory, the program proceeds with the eval-
uation ofe2. If loc is in global memory and is not already locked, then the

3



current process acquires a lock forloc. If any other process already has the
lock, the process will continue to attempt the operation until the old lock is
removed. All other cases are runtime errors.

Once the current process has grabbed the lock, the expression reduces to
a new expression of the formlocked loc e2. Then it evaluatese2, while
maintaining the lock. When the evaluation ofe2 finishes with a valuev, the
lock is released and the valuev is returned.

do e This allows a robot to interact with the external world. First expression
e is evaluated to a valuev which is then sent to the external world. The
return result of this expression can be arbitrary (it is specified by the external
world). The list of actions currently recognized by the external world is
given in section 4.6.

spawn e This launches a new robot. The code of the spawned robot ise.
sync The current robot waits (i.e., does nothing) until all of its spawned children

have finished executing. Once that happens, ifv1, ... vn are the result values
of the children (in the order they have been spawned), thensync evaluates
to (v1, (v2, (...(vn, 0)))).

There two expressions that never appear in the source of a CL program, but can occur during
the evaluation:

• loc, a memory location. A location can be viewed as a pair(scope, addr) wherescope
identifies whether it is in the local or global memory andaddr is a memory address. A
location can only be generated usinglref andgref expressions.

• locked loc e. This occurs during the evaluation of alock expression , after the lock forloc
has been acquired.

We have provided for you an implementation of the expression type asAbSyn.exp in the file
absyn/absyn.sml.

4.2 Values

Some of the expressions described above are values (i.e. they cannot be evaluated any further).
Here is the list of possible values:

• Integer constantsn;

• Locationsloc;

• Functionsfn id => e;

• Pairs(v1, v2), provided thatv1 andv2 are values.

Note that there is no special type for values in our implementation; it is up to the programmer to
identify which expressions are values.

4



4.3 Local and global memories

A memoryσ can be viewed as a mapping from locations (or addresses) to values. Each robot
has its own local memory that cannot be accessed by other robots. In addition, there is a global
memory shared among all robots.

A difference between a local and the global memories can be illustrated with the following
example:

let

r = lref 0

in

spawn (fn x => (r := 1));

!r

This robot (let’s call it “A”) allocates a location (call itloc) for an integer 0 and then launches

another robot (let’s call it “B”). The local memory ofA is copied to the local memory ofB, so
local memories ofA andB will contain two different locations storing value 0.

After some reductions robotA evaluates to expression!loc and robotB to expression (loc :=
1). RobotB then modifies its own copy of locationloc to 1; memory of robotA is unchanged.
Thus, robotA will return 0.

Now consider the same code wherelref is replaced withgref. Then locationloc will be
allocated in the global memory, so after launchingB locationsloc in both robots will point to the
same place. Therefore, depending on the order of executions ofA andB, robotA will return either
0 (if A is executed beforeB) or 1 (if A is executed afterB).

To make sure that the local memory of a robot cannot be accessed by other robots we need
to maintain the followingglobal memory invariant: values stored in the global memory do not
contain locations from local memories. Thus, each modification of the global memory (i.e. ex-
pressionsgref v and loc := v where loc is a location in the global memory) must be checked
before evaluation: if valuev contains references to local memories, then a run-time error will oc-
cur. An example of an invalid expression isgref (lref 0, 0). A robot trying to execute such
an expression should be terminated.

4.4 Evaluation

A process (that is, a single robot) is represented by a unique process identifierpid, local memory
M and expressione. A current state of the interpreter is described by a queue of processes, as well
as a global memoryMg, and a treeT of spawned processes. A processp is the child ofp′ in the
spawn treeT if p′ has been directly spawned byp.

The interpreter repeatedly performs the following operation: it takes the process at the head of
the queue, performs a single evaluation step on its expression (possibly modifying the process local
and global memory or the spawn tree), and places the modified process at the end of the queue. A
single step is illustrated in Figure 1.

It is important that robot programs execute one step at time. If we evaluated a program down
to a value all at once, the system would not be concurrent because only that robot would be able to
run. Therefore, we must evaluate in steps.

5



processn

pidn local memoryMn expressionen

ppp
process2

pid2 local memoryM2 expressione2

process1

pid1 local memoryM1 expressione1

global memoryMg

spawn treeT

-

process1

pid1 local memoryM ′
1 expressione′

1

processn

pidn local memoryMn expressionen

ppp
process2

pid2 local memoryM2 expressione2

global memoryM ′
g

spawn treeT ′

Figure 1: Single step of the interpreter on process 1. Expressione′ is the result of a single evalua-
tion step one. Possible side effects include modifying local memoryM1 and global memoryMg,
and modifying the spawn treeT .

Given an expression, the evaluator finds the leftmost subexpression that can be reduced, and
reduces this subexpression.

Note that just as in ML, some expressions do not evaluate some of their subexpressions before
doing a reduction. These expressions arelet id = v in e, if v then e1 else e2, fn id => e,
delay e by n, typecase v of (id, id′) => e1 | ..., spawn e, lock loc e, andv ; e. Thev’s indicate
subexpressions that must be fully evaluated before the expression can be reduced, and thee’s
indicate subexpressions that are not evaluated until after the reduction of the whole expression.

4.5 Reductions

The list of possible reductions that can be performed during evaluation is given below. First we
consider reductions that do not change local or global memories. Lettersv stand for values, and
letterse for expressions which may or may not be values.

unopv −→ v′ wherev′ = unopv
v0 binopv1 −→ v′ wherev′ = v0 binopv1

v; e −→ e
let id = v in e −→ e{v/id}

(fn id => e) v −→ e{v/id}
if v then e1 else e2 −→ e1 v ∈ {1, 2, 3 . . . }
if v then e1 else e2 −→ e2 all otherv

delay e by n −→ delay e by n′ wheren′ = n− 1, if n > 1
delay e by 1 −→ e

6



typecase (v, v′) of ... (id, id′) => e ... −→ e{v/id, v′/id′}
typecase v of lab id => e ... −→ e{v/id} where lab is one one the casesint, loc,

fun, or any, which matchesv

e{v/id} stands for the result of substitution of valuev for all occurrences of identifierid in expres-
sione. These reductions are similar to the reductions you have learned for SML. The rules for the
memory accesses are as follows:

!loc −→ v whereloc is a location in the process local memory or in the global
memory, andv is the value stored at this location

lref v −→ loc whereloc is a new location in the process local memory
Side effect: a locationloc is allocated in the memory, its content
is initialized withv

gref v −→ loc whereloc is a new location in the global memory
Checks:v satisfies the global memory invariant (Section 4.3)
Side effect: a locationloc is allocated in the memory, with its
contents initialized tov

loc := v −→ v whereloc is a location in the process local memory or in the global
memory
Checks:v satisfies global memory invariant (ifloc is global)
Side effect: content of the locationloc is replaced withv

Finally, the reductions for concurrent constructs are:

lock loc e −→ e whereloc is a location in local memory
lock loc e −→ lock loc e whereloc is a location in global memory that is currently locked

by another process
lock loc e −→ locked loc e where loc is a location in global memory and is not currently

locked. Effects: locationloc is locked by the current process
locked loc v −→ v whereloc is a location in global memory that is locked by the

current process. Effects: the lock forloc is released
do v −→ e wheree is the expression returned by the external world

Side effect: senddoAction(pid, v) to the external world (which
will return an expressione) wherepid is the process identifier of
the robot (see Figure 2)

spawn e −→ 0 Side effects: (1) select a fresh process identifierpid′

(2) update the spawn treeT ; and (3) launch a new process with
the process identifierpid′ expressione, and a copy of the memory
of the current process. (see Figure 3)

sync −→ sync where not all the spawned children have finished
sync −→ (v1, ..(vn, 0)) wherev1, ..., vn are the values that each of the spawned chil-

dren have evaluated to, in the order in which the kid robots were
launched.

Notice that because expressions may have side effects, it is critical that expressions are evalu-
ated left to right. For example,e1 binope2 must be evaluated as

e1 binope2 −→ v1 binope2 −→ v1 binopv2 −→ v

7



p p p
pid M . . . do v . . .p p p

��
��*

send
doAction(pid, v)

�
�

�
�External

world

�
�

�
�User

?

6
I/O

H
HHHj

e

p p p
pid M . . . e . . .p p p

Figure 2: Evaluation of thedo v expression

p p p
pid M . . . spawn e . . .

p p p
spawn treeT

-

p p p
pid M . . . 0 . . .

pid′ M ep p p
spawn treeT ′

Figure 3: Evaluation of thespawn v expression. Before sending an event to the external world the
interpreter picks a fresh process identifierpid′

4.6 The external world

Currently thedo action performs simple I/O operations, though in PS6 it will be a general mecha-
nism for interacting with the world. The following actions are currently provided:

• do 0 : reads a number from the input, returns it to the interpreter

• do (1, v) : prints the valuev to the output and returnsv.

• do (2, (c1, (c2, (c3, (. . ., (cn, 0)))))) : prints the charactersc1, . . . , cn. Returns
1 if well-formatted, 0 otherwise.

• do (3, v) : if value v is well formed, printsv and returns 1, otherwise prints undefined
text and returns 0. Herev is considered well formed if it only contains pair and integer
expressions.

8



4.7 Configurations

A configurationis the state of the entire interpreter at a particular point during execution. The
configuration consists of a set of processes, each of which has a currently executing expression
and local memory, a global memory that is shared by all the processes, and a spawn tree.

We can describe a single process as a triple〈pid, M, e〉. The entire interpreter configuration is
a tuple containing the global memoryMg and the current queue of processes:

〈T, Mg, 〈pid1, M1, e1〉, . . . , 〈pidn, Mn, en〉〉
The process at the head of the queue, process 1, is the one that will take the next evaluation

step and be pushed to the end of the queue. Suppose that this process takes the evaluation step
e1 −→ e′

1, with side effects that change the local memoryM1 to M ′
1, the global memoryMg to

M ′
g, and the spawn tree fromT to T ′. Then the effect of this step on the configuration as a whole

is this:

〈T, Mg, 〈pid1, M1, e1〉, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉〉
−→ 〈T ′, M ′

g, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉, 〈pid1, M
′
1, e

′
1〉〉

The type for configurationsConfiguration.configuration is implemented in
eval/configuration.sml. A single step of the interpreter is performed by the function
Evaluation.stepConfig in eval/evaluation.sml.

4.8 Creating and terminating robots

Robots can create other robots by callingspawn e. As a result, a new process will be added to
the list of processes. The new process will have a copy of the old process local memory. The two
processes will be able to communicate with each other if the old process had allocated locations in
the global memory before spawning.

If a process has evaluated to a value, then itterminates—it is deleted from the list of processes.
Thus, we have the following evaluation rule:

〈T, Mg, 〈pid1, M1, v1〉, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉〉
−→ 〈T ′, M ′

g, 〈pid2, M2, e2〉, . . . , 〈pidn, Mn, en〉〉
Here,M ′

g is the global memory with all locks belonging topid1 released. The updated spawn tree
T ′, is the same asT , but records the result valuev1 for terminated processpid1.

A process should also be terminated if it causes a run-time error such as a type error (e.g.!0)
or a violation of the global memory invariant (e.g.gref (lref 0)). A process that is terminated
due to a run-time error yields a result of -1. These run-time errors correspond to processes for
which there is no legal reduction. Note that such errors should terminate the process encountering
an error but should not affect other running processes.

5 Using the interpreter

5.1 File structure

The code is structured as follows:

9



• absyn/absyn.sml: definitions of basic types (AbSyn.exp, AbSyn.pid, Absyn.action)

• eval/memory.sig, memory.sml: definition of the memory type (’a Memory.memory) and
associated operations

• eval/spawntree.sig, spawntree.sml: the spawn tree structure

• eval/configuration.sml: definition of the configuration type

• eval/evaluation.sml: a single step of the main interpreter loop

• eval/gc.sig, gc.sml: garbage collector

• world/action.sig: interface for interaction with the external world

• debug/debug-loop.sml: interface for debugging

• eval/check.sig, check.sml: well-formedness and consistency checking for expressions,
processes and memories. Useful when debugging.

• cl/*.cl, a few sample CL programs

5.2 Running CL code

After compiling the code (CM.make()) you can enter the debugging mode using the command

Debug.debug “a string representing a CL program”

You will see a prompt (>). You can get the list of available commands by typing “help”. These are
some commands for quick start:

• step: steps one step and shows the new stepped expression

• run: runs until the end

• l file: resets the interpreter and loads a file with a CL program

• h: gives you the help message and shows you many more commands

• q: quits the debugger

There are many other helpful functions and debugger commands; seedebug/debug-loop.sml

for more details. If you feel that the debugging tools implemented are inadequate, feel free to
modify them.

5.3 String Literals

Although strings are not part of CL the parser will convert string literals into lists of integers. For
example,"hello" parses as(104, (101, (108, (108, (111, 0))))).

10



6 Your task

Part 1: Evaluator (60 pts)

Parts of the single-step evaluator are currently written, but there are holes in the implementation.
Also, the implementation has not been tested fully, so it is your job to fix any problems you may
encounter.

Your task is to finish the single-step evaluator. You will have to make changes to the following
files:

• eval/evaluation.sml

• eval/reductions.sml

To help in your task, we have also implemented some functions ineval/check.sml that can
be used to check whether expression, processes, and memories are well formed. These functions
will be useful in checking that your interpreter is implemented correctly.

To Submit: Completed versions ofeval/evaluation.sml andeval/reductions.sml. Also
submit a summary of your changes in an ASCII fileeval.txt, so that we know where to look
when we are grading.

Part 2: Memory Locks and The Spawn Tree (13 pts)

Finish the implementation of memory synchronization operations, and provide an implementation
for spawn trees. You must modify the following files:

• In eval/memory.sml, provide implementations foracquire, release andreleaseAll;

• In eval/spawntree.sml, provide an implementation for the spawn tree abstraction. Pro-
vide a concrete typetree, and fill in the all of the functions in this file.

To Submit: Completed copies ofmemory.sml andspawntree.sml.

Part 3: The garbage collector (12 pts)

Garbage is data in local or global memory that is not reachable by following any chain of references
from a running process. These locations should be periodically reclaimed and used for subsequent
allocation requests. The process of reclaiming unreachable locations is known asgarbage collec-
tion.

The signaturegc.sig describes an automatic garbage collector for the CL language. Occa-
sionally the garbage collector will be used to clean up memory. For the purpose of CL, two kinds
of garbage collection are defined: local garbage collection and global garbage collection. Local
garbage collection cleans up the local memory of a particular robot. Global garbage collection
cleans the local memory of all robots as well as the shared global memory in a configuration.

11



Implement global and local garbage collection using the mark-and-sweep algorithm described
in class. As implied bygc.sig, themalloc function should try to reuse locations that the garbage
collector has reclaimed.

To help you test your garbage collector, thelocalGC andglobalGC commands in debug mode
will force garbage collections to take place immediately.

To Submit: An implementation of the signaturegc.sig (do not change the signature) in the file
gc.sml.

Part 4: Amortized Complexity Analysis (15 pts)

In class, you sawstatic hashing, where the only way to deal with overfull tables was to do an
explicit table resize. There are many sophisticateddynamichashing techniques, which are designed
to handle growth in data far more gracefully.

This question is about a simple dynamic hashing technique known asextendible hashing. The
main idea is that the hash buckets will be accessed through adirectory; if a particular bucket
becomes overfull, we will not modify the entire table, but we will only split the one offending
bucket, and use the directory to reflect this change to the outside world.

The extendible hashing description below makes the following assumptions:

• each bucket has maximum occupancyk, wherek is a constant

• finding an item in a bucket takes only constant time

Neither of these assumptions are essential to the functioning of extendible hashing, but they
make the description clearer.

6.1 Description of extendible hashing

As mentioned, the hash buckets will be accessed through a directory of pointers. The directory
entries will be the firstc bits of the hash for a particular value.c may change throughout the
algorithm, as we choose to keep more or less information in the directory. For example, suppose
thatc = 2, and that the hash functionh maps some values to the following numbers:h(x) = 10110,
h(y) = 10010, h(z) = 11001, h(w) = 11100

Whenc = 2, the directory has four entries,00, 01, 10 and11. Suppose we insert the valuesx,
y z andw into the hash table. The table will now look as follows:

00
01
10 → [x, y]
11 → [z, w]

Where the directory entries are listed on the left,→ represents a pointer, and[x, y] represents a
bucket containing the valuesx andy.

Now, suppose the maximum occupancyk for a bucket is2, and suppose we want to inserta into
the table, whereh(a) = 10011. We must double the size of the directory, and we must increasec
to 3. The new table will look as follows:

12



000
001
010
011
100 → [a, y]
101 → [x]
110 → [w, z]
111 → [w, z]

Note a few important things:

• There was a bucket split, creating two new buckets[a, y] and[x].

• We did NOT split the[w, z] bucket; both entry110 and111 still point to the same bucket.
This bucket did not need to be split, and we want to avoid unnecessary work. To access that
bucket, we are only really using the two first bits of the directory entry.

Now, continuing with the same example, suppose we want to insertb, whereh(b) = 11101.
We see that we need to split the[w, z] bucket. But do we also need to double the directory? No!
We do need to move from two-bit indexing to three-bit indexing, but our directory already allows
for three-bit indexing. Thus, all we need to do is to split the bucket itself. The new table now looks
like this:

000
001
010
011
100 → [a, y]
101 → [x]
110 → [z]
111 → [w, b]

This gives you the main idea behind extendible hashing. There are a few more technical details
(for instance, we need some bookkeeping so that we know when we need to double the directory
rather than just doing a bucket split). Deletions are basically the reverse of insertions, in that a
bucket is merged with another if it becomes empty or underfull, and this may trigger a directory
halving in some cases.

6.2 Questions

1. Warmup: Explain in words what a worst-case scenario for inserting would look like under
extendible hashing. Also, give a small example to illustrate your scenario - show a few
values being inserted into the hashtable, drawing pictures to show the directory and occupied
buckets after each insertion.

2. For the above worst-case scenario, what is the complexity of a sequence ofn inserts? Give
a formal proof. You may assume that there are no collisions (no two elements hash to the
same value). Hint: what is the largest that a directory can get withn inserts?.

13



3. Now, assume that when a directory doubles in size, the cost of this doubling is constant.
Under this assumption, show that even in the worst-case scenario above, insertion takesO(1)
amortized time. Again, you may assume no collisions. Prove formally, using induction, that
a sequence ofn worst-case inserts takesO(n) time. State very clearly any assumptions you
make. Remember to take into account both the cost of the bucket splitting and the cost of
the directory doubling.

4. Implementing the directory: The above constant-time doubling cannot be achieved with an
array implementation of a directory. Briefly describe an implementation that allows constant-
time doubling. If this implementation sacrifices the run-time complexity of some other op-
eration which previously took constant time, mention what are the changes.

To Submit: Turn in a filehashtable.txt in simple ASCII format containing the solution to this
problem. Note: this is a good problem to do as a warm-up for Prelim 2.

14


	Introduction
	Changes to problem set
	Instructions
	The CL language
	Expressions
	Values
	Local and global memories
	Evaluation
	Reductions
	The external world
	Configurations
	Creating and terminating robots

	Using the interpreter
	File structure
	Running CL code
	String Literals

	Your task
	Description of extendible hashing
	Questions


