CS 312 Problem Set 5: Concurrent Language Interpreter
Due: 11:00 PM, April 14, 2005

1 Introduction

In this assignment you will build an interpreter for a funtional language called CL, with concur-
rency and imperative features. A CL program has multiple processes executing at the same time.
You can think of the concurrent processes as robots. Each robot executes its own CL code, and
has its own local memory. Robots can communicate to each other through a global shared mem-
ory. They can also start off other robots, or wait for the spawned robots to finish. Finally, there is
an outside world that provides additional functionality (for instance, I1/O support), and robots can
request services from this outside world.

For Problem Set 5, you will implement an interpreter for programs written in CL. More pre-
cisely, you will implement the evaluation of CL expressions, including the concurrent constructs.
You will also implement a garbage collector to manage your local and global memories. In the
next assignment, you will use your interpreter to implement a game that uses the robots.

2 Changes to problem set

e [Apr 1] Small change in the specification for spawn trees: a) you need a furdtipi eton
that builds a tree with the root process (insteadmgfty); and b) when a process terminates,
its child processes should not be removed from the spawn tree.

3 Instructions

You will do this problem set by modifying the source files provided in CMS, and submitting the
program that results. As before, your programs must compile without any warnings. Programs
that do not compile or compile with warnings will receive an automatic zero. All files submitted
shouldnot have any lines longer than 80 characters, and ideally all lines should be less than 78
characters long.

We will be evaluating your problem set on several different criteria: the specifications you write
(where appropriate), the correctness of your implementation, code style, efficiency, and validation
strategy. Correctness is worth about two thirds of the total score, and the importance of the other
criteria varies from part to part.

Note that you will be building on your PS5 solution for PS6, so we strongly recommend you
to start early on PS5 and understand the code given to you early. PS5 and PS6 are also partner
assignments. You are expected to find a partner to do this assignment with by April 1. You can
continue working with the partner from PS4, or find somebody else. In either case, you must sign
up in CMS with that partner. If CMS shows that you don't have a partner by April 1, we will
automatically pair you up with someone else in the class at that time.

4 The CL language

The CL language has some interesting features. First, it is a concurrent language in which mul-
tiple processes can be executing simultaneously. Second, it has imperative features that allow
updating mempory locations. Third, processes can get additional services (including input/output
operations) from an external world.

A robot can launch another robot using the expressigawn e. The expressiors provides
the program that the newly created robot is supposed to execute. A robot can then wait for all its
spawned children to finish usirgnc.

There are two different kinds of memories that the robots can read or write. Each robot has its
ownlocal memorywhich can only be used by that robot. Local memory is allocated wigf ¢
expressions. In addition, there isgéobal memorythat is global and shared by all the robots.
Robots can communicate with each other by modifying locations in the global memory. Global
memory is allocated witlgref e expressions.

Robots can request the external world to perform actions, usually using an expression of the
form do e. This expression is evaluated by sending the resulttofthe external world. Different
possible values of are interpreted as requests to perform different actions. In this problem set,
thedo e expression will be used for I/0O operations. For example, the expregsiorcauses the
external world to ask the user to input a number, which is returned as a result of the expression.

The behavior of the external world is not specified by the CL language. We have given you
one possible implementation of the external world, but it will be modified in PS6 to allow robots
to sense and interact with their environment in many more ways.

4.1 Expressions

A CL program for a single robot can contain the following expressions:

n An integer constant, as in SML. Examples3, 0, 2.

(e1,€2) A pair. Evaluates to the value, v2) wherev; andwv, are the respective
results of evaluating the expressiansandes,.

unope Returnsunopapplied to the result of evaluation ef unopis one of the fol-

lowing unary operatorss (negates an integer), andnd (returns a random
number between 1 andwheren is the result of evaluation af).

e1 binope, Applies binary operatobinop to the results of evaluations of the two ex-
pressions. Botla; ande, must evaluate to an integebinopis one of the
following operators:+, —, %, /,mod, <,=. For the last two operators the
result will be 1 if the comparison is true, and 0 otherwise.

e1; € A sequence of expressions. It is evaluated similarly to an ML sequence.
First expressior; is evaluated, possibly creating side effects (modifying
memories). After that the result ef is thrown away and expressien is
evaluated.

letid = e, in ey Binds the result of evaluating to the identifierid and uses the binding to
evaluates,. ldentifiers start with a letter and consist of letters, underscores,
and primes.

fnid=>e¢

ud

€1 €2

if e then e; else ey

typecase ¢ of
Gid,id) => ey
| int id => €9
| loc id =>e3
| fun id => ey
| any id => e;

delay e by n

lref e

grefe
€1 T €2

lock e ey

Anonymous function with the argument and the body. Note that func-
tions are values, so the bodys not evaluated until an argument is supplied
to the function.

Identifier. Must be contained insidelat or fn expression with the same
identifier name, otherwise unbound identifier error will occur.

Function application. Evaluates expressignto a functionfn id => e,
expressiore; to a valuev,, bindswvs, to the identifierid and uses the binding
to evaluate-.

Similar to the MLif/then/else expression except that the result of ex-
pressiore is tested for being greater than O (there are no booleans in CL).
Examples:if 1 then 1 else 2returnsi, if 4<3 then 1 else 2re-
turns2.

First evaluates expressiento a value. If the result is a pair, it binds the
elements of the pair tod andid’ in the case for pairs. Otherwise, it binds
the the result tad in the appropriate case. The cass matches any value.
It then evaluates the expressigrof the matched case.

Each of the cases is optional and can occur at most once. The cass for
is allowed only if at least two of the other cases are missing. As in ML, all
cases must be covered. The expressigfpécase e; of any id => ey”

is equivalentto fet id = e; in ey”.

Note that lists can be emulated in CL using pairs of pairs. Like pattern
matching in ML, thetypecase construct gives the ability to distinguish
between the head and the tail of a list.

Delays the evaluation of by n evaluation steps. The numbermust be

an integer constant greater or equal to 1. At each evaluationssispje-
creased; when it reaches 1, the expression reduces to

Similar to the ML operatiomref. First expressionm is evaluated to a value

v. After that a new locatioroc is allocated in the robot’s local memory
and valuev is stored at this location. The return result of the expression is
locationloc which can be viewed as a memory address.

Similar tolref except that the new location is allocated in the global shared
memory. Before allocating the location the resulea$ checked to ensure
that it satisfies the “global memory invariant” (see sectioh 4.3).

Evaluates expressionto locationloc and returns the value stored at this
location.

Evaluates expression to a locationloc; and expression, to a valuews.
After that replaces the value at the location; with v,. The return result

of this expression is,. If loc; is a location in the global memory, then the
valuews is checked for the “global memory invariant” before assigning (see
sectior] 4.B).

This expression evaluates to a locationJoc, and, except as noted below,
returnsloc. If loc is in local memory, the program proceeds with the eval-
uation ofe,. If locis in global memory and is not already locked, then the

3

current process acquires a lock foc. If any other process already has the
lock, the process will continue to attempt the operation until the old lock is
removed. All other cases are runtime errors.

Once the current process has grabbed the lock, the expression reduces to
a new expression of the foriwcked loc e;. Then it evaluates,, while
maintaining the lock. When the evaluationegffinishes with a value, the
lock is released and the values returned.

doe This allows a robot to interact with the external world. First expression
e is evaluated to a value which is then sent to the external world. The
return result of this expression can be arbitrary (it is specified by the external
world). The list of actions currently recognized by the external world is
given in sectiof 416.

spawn e This launches a new robot. The code of the spawned roleot is

sync The current robot waits (i.e., does nothing) until all of its spawned children
have finished executing. Once that happens,,if.. v,, are the result values
of the children (in the order they have been spawned), than evaluates

to (vy, (ve, (...(vn,0)))).

There two expressions that never appear in the source of a CL program, but can occur during
the evaluation:

e loc, a memory location. A location can be viewed as a faibpe, addr) where scope
identifies whether it is in the local or global memory andir is a memory address. A
location can only be generated using:f andgref expressions.

e locked loce. This occurs during the evaluation ofLack expression , after the lock féoc
has been acquired.

We have provided for you an implementation of the expression typ@sa . exp in the file
absyn/absyn.sml.

4.2 Values

Some of the expressions described above are values (i.e. they cannot be evaluated any further).
Here is the list of possible values:

e Integer constants;

¢ Locationsloc;

e Functionstn id => e;

e Pairs(vq, v7), provided that; andw, are values.

Note that there is no special type for values in our implementation; it is up to the programmer to
identify which expressions are values.

4.3 Local and global memories

A memoryo can be viewed as a mapping from locations (or addresses) to values. Each robot
has its own local memory that cannot be accessed by other robots. In addition, there is a global
memory shared among all robots.

A difference between a local and the global memories can be illustrated with the following
example:

let
r = lref O
in
spawn (fn x => (r := 1));

Ir
This robot (let’s call it “A”) allocates a location (call ikoc) for an integer 0 and then launches

another robot (let’s call it B”). The local memory ofA is copied to the local memory d8, so
local memories ofA and B will contain two different locations storing value O.

After some reductions robot evaluates to expressidmoc and robotB to expressionl¢c :=
1). RobotB then modifies its own copy of locatidnc to 1; memory of robotd is unchanged.
Thus, robotA will return O.

Now consider the same code whereef is replaced withgref. Then locationloc will be
allocated in the global memory, so after launchifigocationsloc in both robots will point to the
same place. Therefore, depending on the order of executiohigodl B, robot A will return either
0 (if A is executed befor®) or 1 (if A is executed afteB).

To make sure that the local memory of a robot cannot be accessed by other robots we need
to maintain the followingglobal memory invariantvalues stored in the global memory do not
contain locations from local memories. Thus, each modification of the global memory (i.e. ex-
pressiongref v andloc := v whereloc is a location in the global memory) must be checked
before evaluation: if value contains references to local memories, then a run-time error will oc-
cur. An example of an invalid expressiongsef (1ref 0, 0). A robot trying to execute such
an expression should be terminated.

4.4 Evaluation

A process (that is, a single robot) is represented by a unique process idemdifiercal memory
M and expression. A current state of the interpreter is described by a queue of processes, as well
as a global memory/,, and a tre€/’ of spawned processes. A process the child ofp’ in the
spawn tred if p’ has been directly spawned py

The interpreter repeatedly performs the following operation: it takes the process at the head of
the queue, performs a single evaluation step on its expression (possibly modifying the process local
and global memory or the spawn tree), and places the modified process at the end of the queue. A
single step is illustrated in Figuré 1.

It is important that robot programs execute one step at time. If we evaluated a program down
to a value all at once, the system would not be concurrent because only that robot would be able to
run. Therefore, we must evaluate in steps.

process: processl
ipid,; |local memoryM,, | | expressior,, ! ipidy; | local memoryM; | | expression) !

process

ipid,,} | local memoryM,, | | expressior,, |

proces .,

ipido | local memoryM, | | expressiore; |

processl proces
ipid;i | local memoryM, | | expressiore; | ipidsi | local memoryM, | | expressiore; |
’ global memoryM, ‘ ’ global memory)s! ‘
’ spawn tredl” ‘ ’ spawn tredl”’ ‘

Figure 1: Single step of the interpreter on process 1. ExpressSisithe result of a single evalua-
tion step ore. Possible side effects include modifying local memafy and global memory/,,,
and modifying the spawn treg.

Given an expression, the evaluator finds the leftmost subexpression that can be reduced, and
reduces this subexpression.

Note that just as in ML, some expressions do not evaluate some of their subexpressions before
doing a reduction. These expressions b€ id = v in e, if v then e; else ey, fn id => e,
delay e by n, typecase v of (id,id’') => ey | ..., spawn ¢, lock loc ¢, andv ; e. Thev’s indicate
subexpressions that must be fully evaluated before the expression can be reduced, ésd the
indicate subexpressions that are not evaluated until after the reduction of the whole expression.

4.5 Reductions

The list of possible reductions that can be performed during evaluation is given below. First we
consider reductions that do not change local or global memories. Letstesd for values, and
letterse for expressions which may or may not be values.

unopv — v’ wherev’ = unopv
vg binopv; — o/ wherev’ = vy binopv,
v;e — e
letid=wvine — e{v/id}
(fnid=>¢e)v — e{v/id}
if v thene; elseey — ¢ ve{l,2,3...}
if v thene; else ey — €9 all otherv
delay ebyn — delayebyn’ wheren'=n—1,ifn>1
delayebyl — e

typecase (v,v') of ... (id,id) =>e ... — e{v/id,v'/id'}
typecase v of labid =>e¢ ... — e{v/id} wherelab is one one the casesit, loc,
fun, or any, which matches

e{v/id} stands for the result of substitution of valuéor all occurrences of identifigrl in expres-
sione. These reductions are similar to the reductions you have learned for SML. The rules for the
memory accesses are as follows:

loc — v wherelocis a location in the process local memory or in the global
memory, and is the value stored at this location
lref v — loc whereloc is a new location in the process local memory

Side effect: a locatiotoc is allocated in the memory, its content
is initialized withv
gref v — loc whereloc is a new location in the global memory

Checksw satisfies the global memory invariant (Secfion 4.3)
Side effect: a locatioroc is allocated in the memory, with its
contents initialized te

loc .= v — v wherelocis a location in the process local memory or in the global
memory
Checks:v satisfies global memory invariant (dc is global)
Side effect: content of the locatidoc is replaced with

Finally, the reductions for concurrent constructs are:
lockloce — e whereloc is a location in local memory
lockloce — 1lockloce wherelocis a location in global memory that is currently locked
by another process
lock loce — lockedloce whereloc is a location in global memory and is not currently
locked. Effects: locatiotoc is locked by the current process

lockedlocv — v whereloc is a location in global memory that is locked by the
current process. Effects: the lock foc is released
dov — e wheree is the expression returned by the external world

Side effect: sendoAction(pid, v) tothe external world (which
will return an expression) wherepid is the process identifier of
the robot (see Figufg 2)
spawne — 0 Side effects: (1) select a fresh process identjfief

(2) update the spawn tré&; and (3) launch a new process with
the process identifigrid’ expressiore, and a copy of the memory
of the current process. (see Fig[ife 3)

sync — sync where not all the spawned children have finished

sync — (vy,..(v,,0)) wherewy, ..., v, are the values that each of the spawned chil-
dren have evaluated to, in the order in which the kid robots were
launched.

Notice that because expressions may have side effects, it is critical that expressions are evalu-
ated left to right. For example; binope; must be evaluated as

e1 binopey; — vy binope; — vy binopvy, — v

External

send
world

doAction(pid, v)

I/0

pid e it e

Figure 2: Evaluation of theo v expression

; ipidi LM .0 ...
ipidi i M i --- spawn e .. ; - 5
pid'i M e
’ spawn tre’ ‘ ’ spawn tred” ‘

Figure 3: Evaluation of thepawn v expression. Before sending an event to the external world the
interpreter picks a fresh process identified’

4.6 The external world

Currently thedo action performs simple I/O operations, though in PS6 it will be a general mecha-
nism for interacting with the world. The following actions are currently provided:

e do 0: reads a number from the input, returns it to the interpreter
e do (1, wv): printsthe value to the output and returns

e do (2, (c1, (eo, (c3, (.., (cu, 0)))))) : prints the characters, ..., ¢,. Returns
1 if well-formatted, O otherwise.

e do (3, wv) : if valuewv is well formed, printsv and returns 1, otherwise prints undefined
text and returns 0. Here is considered well formed if it only contains pair and integer
expressions.

4.7 Configurations

A configurationis the state of the entire interpreter at a particular point during execution. The
configuration consists of a set of processes, each of which has a currently executing expression
and local memory, a global memory that is shared by all the processes, and a spawn tree.

We can describe a single process as a trfplé, M, ¢). The entire interpreter configuration is
a tuple containing the global memofy, and the current queue of processes:

<Ta Mg7 <pld17 M17 €1>7 sy <pZdn7 Mna en>>

The process at the head of the queue, process 1, is the one that will take the next evaluation
step and be pushed to the end of the queue. Suppose that this process takes the evaluation step
e; — ¢}, with side effects that change the local memary to A/], the global memoryl/, to
M,, and the spawn tree froffito 7". Then the effect of this step on the configuration as a whole
is this:

<T7 Mga <p@d1, Mlv 61)7 <pld27 M27 €2>a sy <pldn7 Mna en>>
— <T’, MS/]’ <pld2, MQ, 62>, ey <pZdn, Mn, €n>, <pZd1, M{, 6/1>>
The type for configurationsConfiguration.configuration IS implemented in
eval/configuration.sml. A single step of the interpreter is performed by the function
Evaluation.stepConfigin eval/evaluation.sml.

4.8 Creating and terminating robots

Robots can create other robots by callgggrwn e. As a result, a new process will be added to
the list of processes. The new process will have a copy of the old process local memory. The two
processes will be able to communicate with each other if the old process had allocated locations in
the global memory before spawning.

If a process has evaluated to a value, theerihinates—it is deleted from the list of processes.
Thus, we have the following evaluation rule:

<T7 Mg7 <pZd1, M17 Ul>7 <p2d27 M27 €2>7 ey <p2dna Mn7 €n>>
- <T,7 Méu <pid27M2762>7' 7<pldn7Mnuen>>

Here, M, is the global memory with all locks belonging péd, released. The updated spawn tree
T’, is the same &%, but records the result valug for terminated processd; .

A process should also be terminated if it causes a run-time error such as a type errod)(e.g.
or a violation of the global memory invariant (egref (lref 0)). A process that is terminated
due to a run-time error yields a result of -1. These run-time errors correspond to processes for
which there is no legal reduction. Note that such errors should terminate the process encountering
an error but should not affect other running processes.

5 Using the interpreter
5.1 File structure

The code is structured as follows:

e absyn/absyn.sml: definitions of basic types\pSyn. exp, AbSyn.pid, Absyn.action)

e eval/memory.sig, memory.sml: definition of the memory type’é Memory.memory) and
associated operations

e eval/spawntree.sig, spawntree.sml: the spawn tree structure

e eval/configuration.sml: definition of the configuration type

e eval/evaluation.sml: a single step of the main interpreter loop

e eval/gc.sig, gc.sml: garbage collector

e world/action.sig: interface for interaction with the external world
e debug/debug-loop.sml: interface for debugging

e eval/check.sig, check.sml: well-formedness and consistency checking for expressions,
processes and memories. Useful when debugging.

e cl/*.cl, afew sample CL programs

5.2 Running CL code

After compiling the code@V.make ()) you can enter the debugging mode using the command

Debug.debug “a string representing a CL program”

You will see a prompt¥). You can get the list of available commands by typing “help”. These are
some commands for quick start:

e step: steps one step and shows the new stepped expression
e run: runs until the end

e 1 file: resets the interpreter and loads a file with a CL program

h: gives you the help message and shows you many more commands

q: quits the debugger

There are many other helpful functions and debugger commandseiseg/debug-1loop . sml
for more details. If you feel that the debugging tools implemented are inadequate, feel free to
modify them.

5.3 String Literals

Although strings are not part of CL the parser will convert string literals into lists of integers. For
example,"hello" parses al04, (101, (108, (108, (111,0))))).

10

6 Your task
Part 1: Evaluator (60 pts)

Parts of the single-step evaluator are currently written, but there are holes in the implementation.
Also, the implementation has not been tested fully, so it is your job to fix any problems you may
encounter.

Your task is to finish the single-step evaluator. You will have to make changes to the following
files:

e eval/evaluation.sml

e eval/reductions.sml

To help in your task, we have also implemented some functiorsd/check.sml that can
be used to check whether expression, processes, and memories are well formed. These functions
will be useful in checking that your interpreter is implemented correctly.

To Submit: Completed versions afval/evaluation.sml andeval/reductions.sml. Also
submit a summary of your changes in an ASCII &kal.txt, so that we know where to look
when we are grading.

Part 2: Memory Locks and The Spawn Tree (13 pts)

Finish the implementation of memory synchronization operations, and provide an implementation
for spawn trees. You must modify the following files:

e In eval/memory.sml, provide implementations fatcquire, release andreleaseAll;

e In eval/spawntree.sml, provide an implementation for the spawn tree abstraction. Pro-
vide a concrete typeree, and fill in the all of the functions in this file.

To Submit: Completed copies afemory.sml andspawntree.sml.

Part 3: The garbage collector (12 pts)

Garbage is data in local or global memory that is not reachable by following any chain of references
from a running process. These locations should be periodically reclaimed and used for subsequent
allocation requests. The process of reclaiming unreachable locations is kngarbage collec-

tion.

The signaturegzc . sig describes an automatic garbage collector for the CL language. Occa-
sionally the garbage collector will be used to clean up memory. For the purpose of CL, two kinds
of garbage collection are defined: local garbage collection and global garbage collection. Local
garbage collection cleans up the local memory of a particular robot. Global garbage collection
cleans the local memory of all robots as well as the shared global memory in a configuration.

11

Implement global and local garbage collection using the mark-and-sweep algorithm described
in class. As implied bgc.sig, themalloc function should try to reuse locations that the garbage
collector has reclaimed.

To help you test your garbage collector, thealGC andglobalGC commands in debug mode
will force garbage collections to take place immediately.

To Submit: An implementation of the signatugg:. sig (do not change the signature) in the file
gc.sml.

Part 4: Amortized Complexity Analysis (15 pts)

In class, you savstatic hashing, where the only way to deal with overfull tables was to do an
explicittable resize. There are many sophisticaigthmichashing techniques, which are designed
to handle growth in data far more gracefully.

This question is about a simple dynamic hashing technique knowrtesdible hashingThe
main idea is that the hash buckets will be accessed throudjreetory; if a particular bucket
becomes overfull, we will not modify the entire table, but we will only split the one offending
bucket, and use the directory to reflect this change to the outside world.

The extendible hashing description below makes the following assumptions:

e each bucket has maximum occupangyvherek is a constant
¢ finding an item in a bucket takes only constant time

Neither of these assumptions are essential to the functioning of extendible hashing, but they
make the description clearer.

6.1 Description of extendible hashing

As mentioned, the hash buckets will be accessed through a directory of pointers. The directory
entries will be the first bits of the hash for a particular value. may change throughout the
algorithm, as we choose to keep more or less information in the directory. For example, suppose
thatc = 2, and that the hash functidgnmaps some values to the following numbérgr) = 10110,
h(y) = 10010, h(z) = 11001, h(w) = 11100

Whenc = 2, the directory has four entrieg(, 01, 10 and11. Suppose we insert the values
y z andw into the hash table. The table will now look as follows:

00
01
10 — [z,y]
11 — [z, w]
Where the directory entries are listed on the leftrepresents a pointer, afd y| represents a
bucket containing the valuesandy.
Now, suppose the maximum occupardpr a bucket i, and suppose we want to inselinto
the table, wheré(a) = 10011. We must double the size of the directory, and we must increase
to 3. The new table will look as follows:

12

Note a few important things:
e There was a bucket split, creating two new bucketg| and|[z].

e We did NOT split the[w, z] bucket; both entryi 10 and 111 still point to the same bucket.
This bucket did not need to be split, and we want to avoid unnecessary work. To access that
bucket, we are only really using the two first bits of the directory entry.

Now, continuing with the same example, suppose we want to ihserereh(b) = 11101.
We see that we need to split the, z] bucket. But do we also need to double the directory? No!
We do need to move from two-bit indexing to three-bit indexing, but our directory already allows
for three-bit indexing. Thus, all we need to do is to split the bucket itself. The new table now looks
like this:

111 — [w, b]

This gives you the main idea behind extendible hashing. There are a few more technical details
(for instance, we need some bookkeeping so that we know when we need to double the directory
rather than just doing a bucket split). Deletions are basically the reverse of insertions, in that a
bucket is merged with another if it becomes empty or underfull, and this may trigger a directory
halving in some cases.

6.2 Questions

1. Warmup: Explain in words what a worst-case scenario for inserting would look like under
extendible hashing. Also, give a small example to illustrate your scenario - show a few
values being inserted into the hashtable, drawing pictures to show the directory and occupied
buckets after each insertion.

2. For the above worst-case scenario, what is the complexity of a sequendesafits? Give
a formal proof. You may assume that there are no collisions (no two elements hash to the
same value). Hint: what is the largest that a directory can getmwitiserts?.

13

3. Now, assume that when a directory doubles in size, the cost of this doubling is constant.
Under this assumption, show that even in the worst-case scenario above, inserti@nigkes
amortized time. Again, you may assume no collisions. Prove formally, using induction, that
a sequence af worst-case inserts takésn) time. State very clearly any assumptions you
make. Remember to take into account both the cost of the bucket splitting and the cost of
the directory doubling.

4. Implementing the directory: The above constant-time doubling cannot be achieved with an
array implementation of a directory. Briefly describe an implementation that allows constant-
time doubling. If this implementation sacrifices the run-time complexity of some other op-
eration which previously took constant time, mention what are the changes.

To Submit: Turn in a filehashtable. txt in simple ASCII format containing the solution to this
problem. Note: this is a good problem to do as a warm-up for Prelim 2.

14

	Introduction
	Changes to problem set
	Instructions
	The CL language
	Expressions
	Values
	Local and global memories
	Evaluation
	Reductions
	The external world
	Configurations
	Creating and terminating robots

	Using the interpreter
	File structure
	Running CL code
	String Literals

	Your task
	Description of extendible hashing
	Questions

