Verification using testing

- Code verification gives extra confidence when testing is not enough
 - Maybe not possible to test adequately
 - Or code needs high assurance
 - Proves presence of bugs, not their absence
Verification using proofs

• Goal: prove program works
--- Strategy: prove that each implementation satisfies its specification

--- Consider each module separately
• Assume other modules satisfy their specifications
• Works if no cycles in module dependency; otherwise may have to consider multiple modules at once

--- Key technique: induction
• Necessary for reason about recursive computations

lmax example

• Does the following implementation satisfy its specification?

(* lmax(lst) is the largest element
 * in lst. Requires: lst is non-nil. *)

fun lmax(lst: int list):int =
 case lst of
 [] => raise Fail "?"
 | [x] => x
 | h::t => Int.max(h, lmax(t))

Problem: Recursion leads to circular reasoning!
Proof by induction

Goal: prove some proposition is true for an infinite collection
- E.g., \(\text{lmax(1st)} \) is the max element for all non-empty lists \(\text{lst} \)

1. State the proposition as a condition \(P(n) \) that must be true for all \(n \geq n_o \) (usually \(n_o \) is 0 or 1)
- \(n \) is the length of the list \(\text{lst} \) \((n \geq 1) \)
- \(P(n) \) is: \(\text{lmax(1st)} \) is the max elem for all lists \(\text{lst} \) of length \(n \)

2. Base case: show \(P(n_o) \)
- E.g., \(\text{lmax(1st)} \) is the max elem for all 1-elm lists \(\text{lst} \)

3. State induction hypothesis \(P(n) \)
- Assume \(\text{lmax(1st)} \) is the max elem for all lists \(\text{lst} \) of length \(n \)

4. Induction step: show \(P(n+1) \) assuming induction hypothesis
- Show: \(\text{lmax(1st)} \) is the max elem for all \((n+1)\)-elem lists \(\text{lst} \)

5. State conclusion: \(P(n) \) is true for all \(n \geq n_o \)

\[P(1) \implies P(2) \implies P(3) \implies \ldots \implies P(n) \implies \ldots \]
“falling dominos”

\[\begin{align*}
\text{lmax} & \text{ is the largest element in lst.} \\
& \text{* Requires: \(\text{lst} \) is non-nil. *}
\end{align*} \]

fun \(\text{lmax(lst: int lst): int =} \)
\[
\text{case lst of}
\]
\[
\begin{array}{lll}
| [] & => & \text{raise Fail “?”} \\
| [x] & => & x \\
| _ : _ & => & \text{Int.max(h, lmax(t))}
\end{array}
\]

1. State the proposition: for all \(n \geq 1 \), \(\text{lmax(1st)} \) is the max elem for all lists \(\text{lst} \) of length \(n \)

2. Base case: is \(\text{lmax(1st)} \) give max elem for all 1-elm lists \(\text{lst} \)?
- \(\text{lmax([v])} \) case \([v] \) of ...

3. Induction hypothesis: \(\text{lmax(1st)} \) works for all \(\text{lst} \) of length \(n \)

4. Induction step: consider \(\text{lmax(1st)} \) where \(\text{lst} \) has length \(n+1 \)
- \(\text{lst} = [v_1, v_2, \ldots, v_{n+1}] \)
- \(\text{lmax([v_1, v_2, \ldots, v_{n+1}])} \) case \([v_1, v_2, \ldots, v_{n+1}] \) of ...
- \(\text{Int.max(v_j, lmax([v_2, \ldots, v_{n+1}]))} \)
- \(\text{IH: lmax([v_2, \ldots, v_{n+1}])} \) evaluates to maximum of \(v_2, \ldots, v_{n+1} \)
- If \(v_j \geq \text{lmax([v_2, \ldots, v_{n+1}])} \), \(v_j \) is max of \(v_1, \ldots, v_{n+1} \)

5. Conclusion: \(\text{lmax} \) finds the max elem for all non-nil lists
Data abstraction

\textbf{Type} \texttt{set} = int list

(* AF: \([x_1, \ldots, x_n]\) represents \([x_1, \ldots, x_n]\) *)

(* RI: no duplicates or negative elements *)

\textbf{Fun} \texttt{union}(s1: set, s2: set)=

\texttt{foldl}(fn(x,s) \Rightarrow \text{if contains}(s,x) \text{ then } s \text{ else } x::s) \ s1 \ s2

union is correct if:

If: RI(s1) and RI(s2) hold,

Then: RI(union(s1, s2)) holds and

\AF(\text{union}(s1, s2)) = \AF(s1) \cup \AF(s2)

Correctness

- Given: \(s_1\) and \(s_2\) contain no negative elements or duplicates

- Show: RI(union(s1, s2)) and

 \AF(\text{union}(s_1, s_2)) = \AF(s_1) \cup \AF(s_2)

- \texttt{union}(s_1, s_2)

 \texttt{foldl} (fn(x,s) \Rightarrow \text{if contains}(s,x) \text{ then } s \text{ else } x::s) \ s_1 \ s_2

- Now we need to use induction!
Proof by induction

- **State proposition** in terms of \(P(n) \): for all \(n \geq 0 \), if \(\text{RI}(s_1) \) and \(\text{RI}(s_2) \) and \(s_2 \) has length \(n \), \(\text{foldl}(\ldots) \) \(s_1 \ s_2 \) evaluates to a list \(l \) such that
 \(\text{RI}(l) \) is true & \(\text{AF}(l) = \text{AF}(s_1) \cup \text{AF}(s_2) \)

- **Base case**: \(\text{foldl}(\ldots) \) \(s_1 \ [\] \) evaluates to \(l = s_1 \)
 \(\text{RI}(s_1) \) so \(\text{RI}(1) \), \(\text{AF}(s_1) \cup \text{AF}(\{\}) = \text{AF}(s_1) \cup \emptyset = \text{AF}(s_1) = \text{AF}(1) \)

- **Induction hypothesis**: assume \(P(n) \)

- **Induction step**: assume \(\text{RI}(s_1) \& \text{RI}(s_2) \) and \(s_2 = \{v_1, \ldots, v_{n+1}\} \)
 - Recall: \(\text{foldl} f \ b \ (h:\{t\}) = \text{foldl} f (f(h,b)) t \)
 - \(\text{foldl} (\ldots) \) \(s_1 \ [v_1, \ldots, v_{n+1}] \)
 - \(\text{foldl} (\ldots) (\ldots)(\ldots, s_1) \) \([v_1, \ldots, v_{n+1}] \)

Inductive step

\[
\text{fun union}(s_1: \text{set}, s_2: \text{set}) = \\
\text{foldl} (\text{fn}(x,s) \Rightarrow \text{if contains}(s,x) \text{ then } s \text{ else } x:s) s_1 s_2 \\
\text{Given: } s_1 \text{ and } s_2 \text{ contain no negative elements or duplicates} \\
\text{Show: } \text{RI}(\text{union}(s_1, s_2)) \& \text{AF}(\text{union}(s_1, s_2)) = \text{AF}(s_1) \cup \text{AF}(s_2)
\]

- **Induction hypothesis \(P(n) \):** if \(\text{RI}(s_1) \& \text{RI}(s_2) \) and \(s_2 \) has length \(n \),
 \(\text{foldl}(\ldots) \ s_1 \ s_2 \) evaluates to a list \(l \) such that:
 \(\text{RI}(l) \) is true & \(\text{AF}(l) = \text{AF}(s_1) \cup \text{AF}(s_2) \)

- **Induction step, show \(P(n+1) \)**
Inductive step

- Induction step, show P(n+1):
 assume $\text{RI}(s_1)$ & $\text{RI}(s_2)$ and $s_2 = [v_1, \ldots, v_n, \ldots]$.

 - foldl \ldots s_1 $[u_1, \ldots, u_n, 1]$
 - foldl \ldots s_2 $[(\ldots)(v, s_1)]$ $[v_2, \ldots, v_n, 1]$

 - foldl \ldots (if contains(s_1, v) then s_1 else v) \ldots s_1'

- Have $\text{RI}(s_1)$, so we can assume contains works

 - if contains(s_1, v) then s_1 else v : : s_1' where $\text{RI}(s_1')$ and $\text{AF}(s_1') = \text{AF}(s_1) \cup \{v\}$

- Now, can use induction hypothesis on foldl \ldots s_1' $[v_2, \ldots, v_n, 1]$

 - it evaluates to a list 1 such that $\text{RI}(1) & \text{AF}(1) = \text{AF}(s_1') \cup \text{AF}([v_2, \ldots, v_n, 1])$

 - $= \text{AF}(s_1) \cup \{v\} \cup [v_2, \ldots, v_n, 1]$

 - $= \text{AF}(s_1) \cup \text{AF}(s_2)$

- This 1 is the result of union(s1, s2) – we’re done!

Some thoughts

- We can really prove code works!
- Convincing proof requires knowing evaluation rules for language
- Almost any interesting code requires proof by induction
- Using recursive functions, loops correctly requires inductive reasoning – you have already (partly) internalized this process
- Reasoning explicitly avoids errors