
1

CS 312
1 May 2003

Lazy Evaluation,
Thunks, and Streams

Evaluation
• SML as you know it (substitution semantics)

if true then e1 else e2 e1
if false then e1 else e2 e2

• “if” eagerly evaluates condition expression to
true or false, lazily evaluates e1, e2

fn (x) => e is a value

• In general: subexpressions either eagerly or
lazily evaluated
– Function bodies: lazily evaluated

Factorial – right and wrong

fun factorial (n : int) : int =

if n <= 0 then 1 else n*factorial(n-1)

When evaluating factorial 0,

when do we evaluate n*factorial(n-1)?

fun factorial2 (n : int) : int =

my_if(n <= 0, 1, n*factorial(n-1))

When evaluating factorial2 0,

when do we evaluate n*factorial(n-1)?

Eager evaluation in ML
• Function arguments evaluated before the

function is called (and values are passed)
• if condition evaluated after guard

evaluated

• Function bodies not evaluated until
function is applied.

• Need some laziness to make things work…

Laziness and redundancy
• Eager language (SML)

let x = v in e2 e2{v/x}
(fn(x) => e2) (v) e2{v/x}

– Bound value is evaluated eagerly before body e2

• Lazy language:
let x = e1 in e2 e2{e1/x}
(fn(x) => e2) (e1) e2{e1/x}

– e1 is not evaluated until x is used

– Variable can stand for unevaluated expression
– But: what if x occurs 10 times in e2 ?

A funny rule

• val f = fn()=>e evaluates e every time but
not until f is called.

• val f = e evaluates e once “right away”.

• What if we had
val f = Thunk.make (fn()=> e)

which evaluates e once, but not until we use f.

A general mechanism for lazy evaluation

2

Lazy Evaluation

val f = Thunk.make (fn()=> e)

which evaluates e once, but not until we use f

• Best of both worlds: no redundant evaluations,
no unnecessary evaluations

• But…harder to reason about when something
happens (but maybe you don’t care!)

• How to make sure we evaluate e at most once?

The Thunk ADT
signature THUNK = sig

(* A ‘a thunk is a lazily
* evaluated expression e of type
* ‘a. *)
type 'a thunk
(* make(fn()=>e) creates a thunk
* for e *)
val make : (unit->'a) -> 'a thunk
(* apply(t) is the value of its
* expression, which is only evaluated
* once. *)

apply : 'a thunk -> 'a
end

Lazy languages
• Implementation has to use a ref. (How else

could Thunk.apply e act differently at
different times?)

• Some languages have special syntax for lazy
evaluation.

• Algol-60, Haskell, Miranda:
val x = e acts like

val x = Thunk.make (fn()=> e)

• We implemented lazy evaluation using refs and
functions – lazy functional languages have this
implementation baked in.

Streams
• A stream is an “infinite” list – you can ask

for the rest of it as many times as you like
and you’ll never get null.

• The universe is finite, so a stream must
really just act like an infinite list.

• Idea: use a function to describe what
comes next.

The Stream ADT

signature STREAM =
sig
(* An infinite sequence of ‘a *)
type 'a stream
(* make(b,f) is the infinite sequence
* [b,f(b),f(f(b)), …] *)
val make: ('a*('a->'a)) -> 'a stream
(* next[x0,x1,x2,…] is (x0, [x1,x2,…]) *)
val next: 'a stream -> ('a*'a stream)

end

Example: infinite list of primes

That was cool…
• We could model infinite sequences (of

numbers, of circuit states, of whatever)
without destroying old versions with refs.

• In fact, the stream is non-imperative! (if
function is non-imperative)

• State without the destructive updates…

3

Implementing streams (wrong)

Intuitively:
datatype 'a stream =
Cons of ('a * 'a stream)

fun make (init:'a, f:'a -> 'a): 'a stream =
Cons(init, make (f init, f))

fun next (Str(th):'a stream): 'a*'a stream =
th

But what is make going to do?

The Punch-line

If only there were a way to delay the
making of the rest of the stream until
the previous items had been accessed…

0 1 fn () => …

…

(Implementation: stream.sml)

Streams via functions
structure Stream :> STREAM =

struct
datatype 'a stream =
Cons of unit -> ('a * 'a stream)

fun make (init : 'a, f : 'a -> 'a) : 'a stream =
Cons(fn () => (init, make (f init, f)))

fun next (Cons(F): 'a stream): 'a * 'a stream =
F()

end

Streams via thunks
structure Stream :> STREAM =

struct
datatype 'a stream =
Cons of ('a * 'a stream) Thunk.thunk

fun make (init : 'a, f : 'a -> 'a) : 'a stream =
Cons(Thunk.make(fn() =>

(init, make (f init, f))))

fun next (Cons(th): 'a stream): 'a * 'a stream =
Thunk.apply th

end

Advantage: stream values are computed at most once,
(and only if needed)

Summary
ADTs for lazy computation:

• Thunk – one lazy expression

• Stream – infinite sequence, lazily computed

• Lazy language: can make recursive data
structures, streams are lists
val lst = 1::lst

• Try it out!

