
The Y Combinator, Self-Reference and the Halting Problem

So far this semester, you have seen a lot of recursion. Perhaps too much recursion. But why is recursion
important? What does a language that supports recursion have to offer over one that doesn’t? Today
we’re going to show how recursion is a concept which defines the limits of what we can compute, and
how such a powerful concept can come from relatively humble beginnings.

You have seen ugly hacks that introduce recursion into a language. In the environment model, we
cheated by allocating a frame with a "junk value" before making the closure, and then fixing things up
afterwards. We did the same thing with Letrec_l evaluation in problem set 5. You might be thinking that
recursion is somehow 'above' the power of non-recursive languages. Without someone outside the
system coming in and hacking around, is it possible for a non-recursive language to create recursion?
Literally, can a language containing only finite statements express something which is infinite?

Let's examine the function fact:

fun fact x = if x=0 then 1 else x*fact(x-1)

Can we construct this using only val declarations?
We can, but it's a similar hack that you've seen before: we use 'junk values':

val fact = let
  val fact':(int -> int) ref = ref (fn x => x)
  val f = fn x => if x=0 then 1 else x*(!fact'(x-1))
in
  fact' := f;
  fn x => !fact' x
end

Not a single fun declaration anywhere!
But we’re still cheating, using the same kind of trick we used before. Suppose we can’t step in and
change things using refs…could we still construct fact? Let’s unroll the recursion one level:

fun fact’ x = if x=0 then 1 else x*fact’(x-1)
val fact = fn x => if x=0 then 1 else x*fact’(x-1)

As long as fact’ is in scope, the second statement works without using refs or the fun keyword.

fun fact’ x = if x=0 then 1 else x*fact’(x-1)
val fact’’ = fn f => fn x => if x=0 then 1 else x*f(x-1)
val fact = fn x => (fact’’ fact’ x)

This is a little closer. fact’’ no longer needs the recursive function to be in scope, as long as it’s passed
in as an argument.

val fact’’ = fn f => fn x => if x=0 then 1 else x*(f f)(x-1)
val fact = fact’’ fact’’

No more fun declarations! No more refs! Check to make sure you are convinced that this does the right
thing.

The construct we have used can be generalized into something else, which takes in a non-recursive
function and makes it recursive. This powerful construct is called the Y-Combinator <thunder, lighting>.

val Y = fn f => (fn x => f(x x)) (fn x => f(x x))

We can use this to build recursive fact simply by calling Y fact’’.



Let’s see the substitution model explanation for why this works:

Y fact’’ =  (fn x => fact’’(x x)) (fn x => fact’’(x x))
   =  fact’’ ((fn x => fact’’(x x)) (fn x => fact’’(x x)))
   =  fact’’ (fact’’ ((fn x => fact’’(x x)) (fn x => fact’’(x x)))
   =  fact’’ (fact’’ (fact’’ ...))

         =  fact’’ (Y fact’’)

Y fact'' 1 = Y fact’’ 1
    = fact’’ (Y fact'') 1
    = if 1=0 then 1 else 1*(((Y fact'')(Y fact'')0)
    = 1*((Y fact’’) (Y fact’’)) 0)
    = 1*(((fn x => fact’’(x x)) (Y fact’’)) 0)
    = 1*(fact’’ ((Y fact’’)(Y fact’’)) 0)
    = 1*(if 0=0 then 1 else 1 * (((Y fact’’) (Y fact’’)) 0-1))
    = 1*1 = 1

The power behind the y-combinator comes from the idea of self reference. The Y-combinator essentially
makes functions ‘self-aware’, in that it puts them in their own scope. This is exactly the functionality of the
fun keyword, and is the power we were looking for.

Does this power come at a price?

In the earlier part of the 20th century, mathematicians were looking for ways to formalize what it
meant for something to be computable. Bertrand Russel and Alfred Whitehead began an enormous push
to this end: Principia Mathematica. The idea was to create a finite set of axioms from which we could
derive all true statements about the universe. To wax philosophical, mathematicians at the time believed
that math was the tool God had given them by which to discover his creation. Literally, anything that was
True could be Proved. Anything true could be understood by man, using the power of this formalism.

PA depended on two things: Soundness and Completeness. A proof system is sound if every
statement we can prove is true. In other words, it works. If a proof system is unsound, we can prove
things that are false, which doesn’t help us find the truth to the universe! A system is Complete if all
statements that are true can be proven. The combination of these two is necessary for us to find all true
statements using the proof system.

We can use some of the ideas in this course to see why this is impossible, and where the
mathematicians went wrong. The reason why these ideas fail is precisely the idea of self-reference, which
the Y-combinator embodies. A mathematician by the name of Kurt Godel was able to construct a
sentence using the formal language of Principia Mathematica that could not be computed by any finite set
of axioms in the system: “This statement is not provable.”  The key to this statement is that it was written
in the language of the proof system. Statements outside the system are allowed to be meaningless: they
are nonsense insofar as the system is concerned. But Godel’s statement was not nonsense…yet it was
certainly not provable. For the mathematicians at the time, this was the equivalent of a truth that could be
felt, but not known.

We can use the Y-combinator to construct such a statement. (Why not?) Suppose we have a
function not, which simply returns the negation of its argument.

What is the value of (Y not) (Y not)?

(Y not)(Y not) = (fn x=>not(x x))(Y not)
               = not ((Y not)(Y not))

Suppose (Y not)(Y not) is true. The result of our expansion should be false.  Conversely, if (Y
not)(Y not) is false, the expansion will return true. Clearly, we have a contradiction here. We can
phrase other well-known questions using the Y-combinator:

• The Halting Problem: suppose we had a function halts, which determined if a program halts on
a given input. Now take its negation, halts’ = not halts. (Y halts’)(Y halts’) gives
us a similar contradiction.



• The Human Existential Crisis: suppose there was a way of knowing whether or not we exist. Call
it a function exists, which takes something and tells us whether or not it exists. For example,
exists CS312 evaluates to true. Most of you might wish it didn’t. Suppose we define
exists’ to be the negation of exists. (Y exists’)(Y exists’) gives us a similar
quandary.

The important thing to gain from this is that almost any system is inherently incomplete.
“No sufficiently powerful deductive system is complete” – Godel

By ‘sufficiently powerful’, we mean that it has the ability to talk about itself. Not all systems suffer from
Incompleteness. Truth tables and propositional logic are examples. However, these can only prove
extremely limited things. No logical system can even prove that it is sound…which poses a problem in
mathematics, since any system you make is not provable until you end up at a paradox. Soundness is
something that is extremely important to a system, yet you can never prove it without going outside the
system, or being comfortable with paradox.

Why would you introduce such a concept into a language? The truth is that without it, the kind of
problems you can solve (in fact, the kind of questions you can ask) are extremely limited without self-
reference.  But even after introducing self-reference, we have seen there there are many questions for
which we will still never know the answer.


