
1

CS 312
Spring 2002

Memory Management

2

The grand illusion
• Evaluation models say: infinite universe of 

SML values
– primitives, tuples, datatype constructors
– arbitrary number of distinct ref cells

• Reality: finite computer memory
– huge array of ~5 billion bits of information
– laid out sequentially on silicon

• How does SML (Java, …) provide this 
abstraction of the hardware?

3

The memory interface

structure Memory =
type memory = int array
type address = int
type data = int
exception UnalignedAccess
val read: address -> data = …
val write: address * data -> unit = …

end

processor

address

data (32+ bits)

20
16
12
8
4
0

.

.

.
.
.
.

words
(4 bytes)

memory

4

A simple model
• SML values stored in memory
• Variables take up one memory location 

(simplification)
• Primitives (int, bool) stored in one word

x: 2

y: true

Environment
model:

nil

Memory:
(stack) 000…00001

000…00010

.

.

.

.

.

.

x
y =1

=2

5

Boxes
• Tuple of values stored sequentially in 

memory

(1, 2, false) 000…0000

000…0010

000…0001

12764

12760

127561 2 false

• Variable bound to a tuple contains 
address of tuple in memory (in SML)

val x =

x:

127563480x

6

Refs
• Ref is just a memory cell

val x = ref 13

x: 13

1348572

4857287624x

x := 17
17



2

7

Memory management
• How does system know where to put 

things in memory? How to:
– Find memory for a new variable

– Find memory for a new value

– Avoid putting two values in same place

– Avoid leaving memory unused

– Reuse memory if value stored there is not 
needed

8

Memory layout
• Three important regions of memory

stack

heap

code

Records the bindings
in the environment
(stores variables)

stores all boxed values

machine code the
processor understands

9

variables
for g

Stack
• Stack grows downward in memory

• Stores variables for each function call

variables
for f call

let
fun g() = …
fun f(…) = … g()…

in
g();
f(…)

end

stack heap

g
f

g code
g env

f code
f env

Stack
pointer

(sp)
10

Heap
• Memory heap ≠ Binary heap
• Memory management:

– where things go in the heap val x = (1, 2, y) …

– when to get rid of things in the heap

– possibly: moving things in the heap

– must be done at run time; can’t preallocate space

• Things in heap:
– Tuples, records

– Refs

– Closures

– Strings
“hello”13

increasing memory address

block of
memory in use

block of
free memory

word containing address word containing int

block
containing

string

11

Allocator interface (explicit free)
signature ALLOCATOR = sig
(* malloc(n) allocates an unused block of
* n bytes and returns the address.
* Requires: n > 0 *)

val malloc: int -> address

(* free(a) releases the previously
* allocated block at address a.
* Requires: a was previously returned
* by malloc and has not been freed
* already *)

val free: address -> unit

end Requires clause on free makes C 
programming difficult -- hard to share values 

between different modules 12

Allocator interface (with GC)
signature ALLOCATOR = sig
(* malloc(n) allocates an unused block of
* n bytes and returns the address.
* Requires: n > 0 *)

val malloc: int -> address

end



3

13

Fixed-size blocks
signature ALLOCATOR = sig
val size = 16
(* malloc(n) allocates an unused block of
* n bytes and returns the address.
* Requires: n = size *)
val malloc: int -> address

(* free(a) releases the previously
* allocated block at address a.
* Requires: a was previously returned
* by malloc and has not been freed
* already *)
val free: address -> unit

end
Much easier to implement…

14

Freelist
• Idea: keep all the unused blocks of 

memory in a linked list
– Use first word of each block to store pointer

– On malloc, update freelist to tail, return head

– On free, do cons

15

Fixed-size allocator
structure Allocator :> ALLOCATOR =

(* freelist actually stored in memory *)
val freelist: address ref = ref 0
val memory: Memory.memory = …

fun malloc(n) = let
val ret = !freelist

val next = Memory.read(memory, !freelist)
in

freelist := next;
ret

end

fun free(a) =
(Memory.write(memory, a, !freelist);
freelist := a)

end

16

Variable-sized blocks
• Problem: different values take different amounts 

of memory
• Idea: use freelist just like before, but with 

variable-sized blocks of memory

• Problems:
– Head of freelist may not be big enough
– Head of freelist may be too big

17

First-fit
• On allocation, walk down freelist until first 

large-enough block is found

• Split into allocated part, unused part, put 
unused part back on freelist

• Problem:
– Can be slow: may need to see entire list

– Fragmentation of heap into small unusable 
blocks (external fragmentation)

18

Buddy system
• Idea 1: accelerate allocation by having multiple freelists, for 

different sizes
• Idea 2: free block can be split into two free “buddies” that know 

about each other

1

2

4

8

…

…
…

…

• malloc: find smallest non-empty freelist larger than requested block 
size.

• Advantage: merge adjacent free blocks (“buddies”) to make free 
block for next-larger freelist

• O(1) malloc, free! (need doubly-linked freelist)

• Disadvantage: internal fragmentation (~20%)

1

2

3

5

…

…
…

…

exponential buddy Fibonacci buddy



4

19

Simple allocator
• A fast allocator that doesn’t support free:
structure Allocator :> ALLOCATOR = struct

(* freelist actually stored in memory *)
val curr: address ref = ref LOW_MEM
val memory: Memory.memory = …

fun malloc(n) = let
val ret = !curr

in
curr := ret + n;
if curr > HI_MEM then raise OutOfMemory
else ret

end
end

• Idea: reclaim memory using an automatic 
garbage collector


