
1

CS 312
Spring 2002

Lecture 16
The Environment Model

Substitution Model
• Represents computation as doing substitutions

for bound variables at reduction of let,
application:

let val x = v in e ���� e{v/x}

(fn(x:t)=>e)(v)���� e{v/x}

let val x = fn z:’a=>z in
x(x(x))

end
���� (fn z=>z)((fn z=>z)(fn z=>z))

Problems
• Not a realistic implementation: substitution is

too slow

(fn(x:t)=>e)(v)���� e{v/x}
… could be many x’s to substitute for…

• Doesn’t handle refs: no aliasing
ref 2 � ?

let val a = ref 2 in
(fn(x,y)=>…x:=1…!y…) (a,a)

end

� (fn(x,y)=>…x:=1…!y…)(ref 2,ref 2) ?
� …(ref 2):=1…!(ref 2)… ?

Environment Model
Don’t substitute for variables; look them up

lazily in an environment!
– No substitution, realistic cost model

– The environment is a finite map from
variables to values

– Example:
let val x = 2

val y = “hello”
val f = fn z:int=>x

in f(x + size(y)) end

x: 2
y: “hello”
f: fn z:int=>x

Evaluate:
f(x + size(y))
in environment: ?

Variables
• To evaluate a variable, look it up in the

environment. To look it up, we start with the
last binding added to the environment and then
work towards the nil.

• Evaluating “x” in this environment yields 3:

x : 3

y : 4
x : 2

z : 3env

nil

Blue boxes:
bindings

Let expressions
To evaluate let val x = e1 in e2:

1. Evaluate e1 in the current environment

2. Extend the current environment with a
binding that maps x to the value of e1

3. Evaluate e2 in the extended environment

4. Restore the old environment (i.e., remove
the binding for x)

5. Return the value of e2

2

Let Example
let val x = (1,2) in #1 x end

current env nil

Let Example
let val x = (1,2) in #1 x end

current env nil

1 2

1. Evaluating (1,2) yields a pointer
to a tuple in memory.

Let Example
let val x = (1,2) in #1 x end

current env nil

1 2

1. Evaluating (1,2) yields a pointer
to a tuple in memory.

2. Extend the environment with a
binding for x.

x: current env

Let Example
let val x = (1,2) in #1 x end

nil

1 2

1. Evaluating (1,2) yields a pointer
to a tuple in memory.

2. Extend the environment with a
binding for x.

x: current env
3. Evaluate the body of the let in

the new environment.
x evaluates to a pointer to the
tuple, so #1 x evaluates to the
first component, namely 1.

Let Example
let val x = (1,2) in #1 x end

nil

1 2

1. Evaluating (1,2) yields a pointer
to a tuple in memory.

2. Extend the environment with a
binding for x.

x: current env
3. Evaluate the body of the let in

the new environment.
x evaluates to a pointer to the
tuple, so #1 x evaluates to the
first component, namely 1.

4. Restore the old environment.current env

Let Example
let val x = (1,2) in #1 x end

nil

1 2

1. Evaluating (1,2) yields a pointer
to a tuple in memory.

2. Extend the environment with a
binding for x.

x:
3. Evaluate the body of the let in

the new environment.
x evaluates to a pointer to the
tuple, so #1 x evaluates to the
first component, namely 1.

4. Restore the old environment.current env
5. Return the value we got: 1

3

Pictorial Overview:
• Primitive values like integers, reals, unit,

or nil evaluate to themselves.

• A tuple value, such as (1,2,3) evaluates to a
pointer to a box in memory containing the
values of the sub-expressions:

1 2 3

Multiple Declarations
To evaluate:

let val x = e1
val y = e2
val z = e3

in
e4

end

Do the same the same thing as you would for:
let val x = e1
in let val y = e2

in let val z = e3
in

e4
end

end
end

Example
let val x = (3,4)

val y = (x,x)
in

#1(#2 y)
end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nilcurrent env

Evaluation of Example
let val x = (3,4)

val y = (x,x)
in

#1(#2 y)
end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nilcurrent env

3 4

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

current env 3 4x :

current env

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

3 4x : current env

4

y :

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

3 4x : current env

current env y :

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

3 4x :

current env

y :

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

3 4x :

current env

Result : 3

y :

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

3 4x : current env

Result is 3

Restore last env

y :

Evaluation of Example

let val x = (3,4)
val y = (x,x)

in
#1(#2 y)

end

let val x = (3,4)
in

let val y = (x,x)
in

#1(#2 y)
end

end

nil

3 4x :

current env
Result is 3

Restore original env

Refs
• To evaluate ref e, evaluate e to a value

first, and then allocate a new ref cell, place
the value in the ref cell, and return a
pointer to the ref cell. For instance, ref
(1,2,3)
evaluates to:

1 2 3

ref cells = red boxes.

5

Ref Example
let val x = ref 2 in

val y = x

in

x:=1; !y

end

nilcurrent env

2

Ref Example
let val x = ref 2 in

val y = x

in

x:=1; !y

end

nil

2x : current env

Ref Example
let val x = ref 2 in

val y = x

in

x:=1; !y

end

nil

2x : current env

y :

Ref Example
let val x = ref 2 in

val y = x

in

x:=1; !y

end

nil

2x :

current env

y :

Ref Example
let val x = ref 2 in

val y = x

in

x:=1; !y

end

nil

1x :

current env y :

Ref Example
let val x = ref 2 in

val y = x

in

x:=1; !y

end

nil

1x :

current env

Result: 1

6

Functions
let val x = 2

val f = fn z:int => x
in
let val x = “bye”

in
f(size(x))

end

• How do we make sure the environment has the
(correct) binding for x?
– We must keep track of the environment at the point

where the function was evaluated.
– Function evaluation: fn z:int => x, not f(size(x))

• We create a closure
– A pair of a function and its environment

Static scope:
ML, Java, Scheme, …

Dynamic scope:
Perl, Python, BASIC

Functions
• To evaluate a function
(fn x => e)create a closure out of the
function and the current environment and
return a pointer to the closure.

y : 4
x : 2

nil

current env

• To evaluate a function (fn x => e)create
a closure out of the function and the
current environment and return a pointer
to the closure.

Creating closures

y : 4
x : 2

nilfn x => e

current env

Result
I’ll draw closures using yellow.

Function Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nilcurrent env

fn z:int => x

x : 2current env

Function Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

current env fn z:int => x

x : 2

f:

Function Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

current env

fn z:int => x

x : 2

f:

x : “bye”

7

Function Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

current env

fn z:int => x

x : 2

f:

x : “bye”

Function Calls
To evaluate e1(e2):

1. evaluate e1 -- you should get a pointer to a closure.

2. evaluate e2 to a value.

3. save the current environment -- we’ll come back to it
after the function call.

4. extend the environment of the closure, mapping the
formal argument to the actual argument.

5. evaluate the body of the function within the extended
environment -- this gives us our result value.

6. restore the old environment (saved in step 3)

7. return the result.

Function Call Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

current env

fn z:int => x

x : 2

f:

x : “bye”

1. Evaluate e1, e2

Function Call Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

saved env

fn z:int => x

x : 2

f:

x : “bye”

current env

1. Evaluate e1, e2
2. Save environ.

Function Call Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

saved env

fn z:int => x

x : 2

f:

x : “bye”

current env

1. Evaluate e1, e2
2. Save environ.
3. Extend env with

actual

z : 3

Function Call Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

saved env

fn z:int => x

x : 2

f:

x : “bye”

current env

1. Evaluate e1, e2
2. Save environ.
3. Extend env with

actual
4. Evaluate body

(result: 2)

z : 3

8

Function Call Example
let val x = 2

val f = fn z:int => x
in
let val x = “bye”
in
f(size(x))

end

nil

current env

fn z:int => x

x : 2

f:

x : “bye”

1. Evaluate e1, e2
2. Save environ.
3. Extend env with

actual
4. Evaluate body

(result: 2)
5. Restore env.

(result: 2)

let val x = ref (fn x:int => x)
val f = fn n:int =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

Creating a cycle

current env nil

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

current env nil

fn x => x

Creating a cycle
let val x = ref (fn x => x)

val f = fn n =>
if n <= 1 then 1 else n * (!x)(n-1)

in
x := f;
f(3)

end

current env nil

fn x => x

Creating a cycle

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

current env

nil

fn x => x

Creating a cycle

x :

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

current env

nil

fn x => x

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)

9

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

current env

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

fn x => x

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

current env

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

fn x => x

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

current env

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

saved env

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

n : 3

current env

Note: !x is the same as f

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

saved env 1

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

n : 3

saved env 2

n : 2

curr env

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

saved env 1

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

n : 3

saved env 2

n : 2

saved 3

n : 1

curr env Result = 1

10

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

saved env 1

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

n : 3

saved env 2

n : 2

curr env

n : 1

Result = 2*1

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

saved env 1

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

n : 3

curr env

n : 2

n : 1

Result = 3*2*1

let val x = ref (fn x => x)
val f = fn n =>

if n <= 1 then 1 else n * (!x)(n-1)
in

x := f;
f(3)

end

curr env

nil

Creating a cycle

x :

fn n => if n <= 1 then 1
else n * (!x)(n-1)f :

n : 3

n : 2

n : 1

f(3) = 6

Recursion
let fun f(n) =

if n <= 1 then 1 else n * f(n-1)
in

f(3)
end

1. create a new binding for f before creating the
closure and extend the current environment with
it (but don’t put in the value yet.)

2. now create a closure for f that uses the extended
environment.

3. fix the binding to use the closure!

Recursion
let fun f(n) => if n <= 1 then 1 else n * f(n-1)
in

f(3)
end

current env

nil

f :

No value for f yet!

1. create a new binding for f before
creating the closure and extend
the current environment with it
(but don’t put in the value yet.)

2. now create a closure for f that
uses the extended environment.

3. fix the binding to use the closure!

1. create a new binding for f before
creating the closure and extend
the current environment with it
(but don’t put in the value yet.)

2. now create a closure for f that
uses the extended environment.

3. fix the binding to use the closure!

Recursion

current env

nil

f :

fn n => if n <= 1 then 1 else n * f(n-1)

let fun f(n) => if n <= 1 then 1 else n * f(n-1)
in

f(3)
end

11

Recursion

current env

nil

f :

fn n => if n <= 1 then 1 else n * f(n-1)

1. create a new binding for f before
creating the closure and extend
the current environment with it
(but don’t put in the value yet.)

2. now create a closure for f that
uses the extended environment.

3. fix the binding to use the closure!

let fun f(n) => if n <= 1 then 1 else n * f(n-1)
in

f(3)
end

Cycle

current env

nil

f :

fn n => if n <= 1 then 1 else n * f(n-1)

let fun f(n) => if n <= 1 then 1 else n * f(n-1)
in

f(3)
end

• Closure points to environment
• Environment points to closure

Cycle

current env

nil

f :

fn n => if n <= 1 then 1 else n * f(n-1)

let fun f(n) => if n <= 1 then 1 else n * f(n-1)
in

f(3)
end

n : 3

Comparison

current env

nil

f :

fn n => if n <= 1 then 1 else n * f(n-1)

x :

current env

nil

fn n => if n <= 1 then 1 else n * (!x)(n-1)f :

