CS312 Preliminary Exam I

	Problem Number
	Possible Points
	Points Received
	Grader

	1a.
	7
	
	

	1b.
	7
	
	

	1c.
	7
	
	

	2a.
	7
	
	

	2b.
	7
	
	

	2c.
	7
	
	

	2d.
	7
	
	

	3a.
	10
	
	

	3b.
	12
	
	

	3c.
	12
	
	

	3d.
	15
	
	

	3e.
	3
	
	

	Total
	101
	
	

	Name:
	

	NetID:
	

1. Rewrite each of the following code fragments so that they are elegant. By elegant, we mean that they have generally good style and are efficient. If the code is already elegant, then you can just write "Already Elegant." (Hopefully, you'll see why we hate to read inelegant code...)

a. [7 points] fun cmp_length(x:int list, y:int list):order =
 if (List.length x) <> (List.length y) then
 if (List.length x) < (List.length y) then
 LESS
 else GREATER
 else EQUAL

b. [7 points] fun cmp_options(x: int option, y: int option):order =
 case x of
 NONE => (case y of NONE => EQUAL | SOME(z) => LESS)
 | SOME(z) => (case y of NONE => GREATER | SOME(a) =>
 if z < a then LESS else if z = a then EQUAL else GREATER)

c. [7 points] fun all_true(xs: int list):bool = if xs = [] then true else if not(hd xs) then false else all_true(tl xs)

2. Give an SML expression to replace the ??? in the code below so as to make the entire expression evaluate to 42.

a. [7 points] ((fn x => (fn f => f(f(x)))) 40) (???)
b. [7 points] let val x = ???
 val x = (fn y => x)
 val x = (fn z => x)
 in
 (x 3) 41
 end

c. [7 points] let fun zardoz(x: int list):int =
 case x of
 42::nil => 1
 | y::nil => 2
 | z::y::w::nil => y
 | _ => 3
 in
 zardoz(???)
 end
d. [7 points] List.foldl (op -) 0 (???)

3. Suppose we have a structure Set that implements the ORDERED_SET signature given below:

signature ORDERED_SET = sig
 type 'a set
 (* Create an empty set by passing in the comparison fn. *)
 val empty : (('a * 'a) -> order) -> 'a set

 (* Insert an element into a set, returning the new set *)
 val insert : 'a * 'a set -> 'a set

 (* Returns the union of the two sets. *)
 val union : 'a set * 'a set -> 'a set

 (* If the set is non-empty, returns SOME(x,s') where x is
 the smallest element in the set, and s' is the
 same as the original set, but with the x removed.
 If the set is empty, returns NONE. *)
 val remove_smallest : 'a set -> ('a * 'a set) option
end
a. [10 points] Though the interface provides a union operation, it is not necessary because we can code it up in terms of the other primitives. Write a union function that takes in two sets and uses only the insert and remove_smallest operations to calculate the union of the two sets.

b. [12 points] Let us assume that sets are implemented as lists, sorted in increasing order, with no duplicates as was done in class. In that setting, insert takes linear time, but remove_smallest takes constant time. Given this information, what would be the worst-case running time for your union operation on two sets each of size n? To receive full credit, you should write out some recurrence equations that describe the base case (when the first set is empty), and the inductive case (when the first set is not empty). Then produce a closed form for the running time using a summation. Finally, eliminate the summation and produce a closed form big-O solution. We'll get you started:

T_union(0, m) =

T_union(i+1, m) =

So, T_union(n, n) = (
Thus, T_union(n, n) = O()

c. [12 points] Suppose we implemented sets using Red-Black trees. Then both insert and remove_smallest would take logarithmic time. Given this information, what would be the worst-case running time for your union operation on two sets of the same size n? To receive full credit, you should write out some recurrence equations and then solve them to get a big-O running time in terms of the size of the two sets

T_union(0, m) =

T_union(i+1, m) =

So, T_union(n, n) = (

Thus, T_union(n, n) = O()

d. [15 points] The following code is intended to sort lists of integers using the Set structure above:

fun sort(xs: int list) : int list =
 let
 val s = List.foldl Set.insert (Set.empty Int.compare) xs
 fun loop(s: int set, ys: int list): int list =
 case remove_smallest s of
 NONE => List.rev ys
 | SOME(y, s2) => loop(s2, y::ys)
 in
 loop(s, [])
 end
Assuming that List.rev runs in linear time, and that we use Red-Black trees to implement sets, what is the worst-case running time of sort in terms of the length of the input list?

e. [3 points] What could go wrong if we actually used the sort routine above to sort a list of integers?

