
Victory Lap

Today’s music: We are the Champions by Queen

Nate Foster
Spring 2019

D. We are the champions, my friends.

And we'll keep on fighting 'til the end.
We are the champions.

No time for losers
'Cause we are the champions of the world.

A. I've paid my dues
Time after time.
I've done my sentence
But committed no crime. B. And bad mistakes‒

I've made a few.
I've had my share of sand kicked in my face
But I've come through.C. It's been no bed of roses,

No pleasure cruise.
I consider it a challenge before the
whole human race,
And I ain't gonna lose.

3110

Victory Lap

Extra trip around the track by the exhausted
victors – WE are the champions

Thank you!

Huge thank you to TAs and consultants!
Rachit Nigam, Audrey Yuan, Alex Jiang, Anna Fang, Alli Portis,
Aniroodh Ravikumar, Akshat Singh, Amanda Xu, Angela Liu,
Cassandra Scarpa, Chris Mulvaney, Newton Ni, David Huang,
Evan Patrick, Eric Wu, Jialu Bao, Joshua Kaplan, Jessica Chen,
Jialing Pei, Jeremy Lee, Jonathan Ou, Kyrylo Chernyshov, Kerri
Diamond, Kevin Gao, dummy, Kenneth Fang, Laasya
Renganathan, Max Ren, Megan Le, Mindy Lou, dummy, Mark
Anastos, Nina Ray, Nickolas Cavagnaro, Jialing Pei, Raymond
Gu, Rudy Peterson, Rachel Nash, Ray Zeng, Sameer Arora,
Sitian Chen, Samuel Thomas, Sitar Harel, Shuhao Qing,
Samwise Parkinson, Sophie Zheng, Tyler Ishikawa, Timmy Zhu,
William Smith, Claire Cui, Elaine Hwang, Tin Kuo, Yuchen
Shen, Ning Ning Sun, Yuxin Xu, Zaibo Wang, Joseph Yang

Thank you!

And a huge thank you to all of you!

• You surmounted a daunting challenge
• You occasionally laughed at my dad jokes J

I ❤ this course. You make it all worthwhile.

What did we learn?

• You feel exhausted...

• You're tired of coding...

...step back and think about what happened

Programming is
not hard

Programming well is
very hard

The Goal of 3110

Become a better programmer
though study of

programming languages

Questions we pursued

• How do you write code for and with other people?
– Modular programming
– Team-based projects

• How do you know your code is correct?
– Testing
– Verification

• How do you describe and implement a
programming language?
– Syntax and semantics
– Interpreters

Tasks we pursued

Practice of programming: read and write lots of code

Tasks we pursued

Practice of programming: coding as a team

Tasks we pursued

Philosophy of programming

Tasks we pursued

Learning a functional language

[Lec 1]
OCaml is awesome because of…
• Immutable programming

– Variable’s values cannot destructively be changed; makes reasoning about program easier!
• Algebraic datatypes and pattern matching

– Makes definition and manipulation of complex data structures easy to express
• First-class functions

– Functions can be passed around like ordinary values
• Static type-checking

– Reduce number of run-time errors
• Automatic type inference

– No burden to write down types of every single variable
• Parametric polymorphism

– Enables construction of abstractions that work across many data types
• Garbage collection

– Automated memory management eliminates many run-time errors
• Modules

– Advanced system for structuring large systems

BIG IDEAS

1. Languages can be learned systematically

• Every language feature can be defined in isolation from other features, with
rules for:
– syntax
– static semantics (typing rules)
– dynamic semantics (evaluation rules)

• Divide-and-conquer!
• Entire language can be defined mathematically and precisely

– SML is. Read The Definition of Standard ML (Revised), by Tofte, Harper, and
MacQueen, 1997.

• Learning to think about software in this “PL” way has made you a better
programmer even when you go back to old ways
– And given you the mental tools and experience you need for a lifetime of

confidently picking up new languages and ideas

2. Immutability is an advantage

• No need to think about pointers or draw
memory diagrams

• Think at a higher level of abstraction

• Programmer can alias or copy without worry

• But mutability is appropriate when
– you need to model inherently state-based

phenomena
– or implement some efficient data structures

3. Programming languages aren’t magic

• Interpretation of a (smallish) language is
something you can implement yourself

• Domain specific languages (DSL): something you
probably will implement for some project(s) in
your career

4. Elegant abstractions are magic

From a small number of simple ideas...

...an explosion of code!
– language features: product types, union types
– higher order functions: map, fold, ...

– data structures: lists, trees, dictionaries, monads
– module systems: abstraction, functors

Computational Thinking

• Computational thinking is using
abstraction and decomposition
when... designing a large, complex
system.

• Thinking like a computer scientist
means more than being able to
program a computer. It requires
thinking at multiple levels of
abstraction.

https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf
https://www.microsoft.com/en-
us/research/video/computational-thinking/

Jeanette Wing

https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf
https://www.microsoft.com/en-us/research/video/computational-thinking/

5. Building software is more than hacking

• Design: think before you type

• Empathy: write code to communicate
• Assurance: testing and verification
• Teamwork: accomplish more with others

6. CS has an intellectual history and
you can contribute

Big ideas

1. Languages can be learned systematically

2. Immutability is an advantage
3. Programming languages aren't magic
4. Elegant abstractions are magic
5. Building software is more than hacking
6. CS has an intellectual history and you can

contribute

Q&A

FAQs

• Why OCaml?

• When will I use FP again?

Languages are tools

Languages are tools

• There's no universally perfect tool
• There's no universally perfect language
• OCaml was good for this course because:
– good mix of functional & imperative features
– relatively easy to reason about meaning of programs
– From the Turing Award citation for Robin Milner:

ML was way ahead of its time. It is built on clean and well-
articulated mathematical ideas, teased apart so that they can
be studied independently and relatively easily remixed and
reused. ML has influenced many practical languages, including
Java, Scala, and Microsoft’s F#. Indeed, no serious language
designer should ignore this example of good design.

• But OCaml isn't perfect (see above)

FAQs

• Why OCaml?

• When will I use FP again?

FAQs

• Why OCaml?

• When will I use FP again? Why did I study FP?

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Analogy: studying a foreign language

• Learn about another culture; incorporate aspects into
your own life

• Shed preconceptions and prejudices about others
• Understand your native language better

Alan J. Perlis

“A language that doesn't affect the
way you think about programming
is not worth knowing.”

First recipient of the Turing Award
for his “influence in the area of advanced programming
techniques and compiler construction”

34

1922-1990

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Functional languages predict the future

• Garbage collection
Java [1995], LISP [1958]

• Generics
Java 5 [2004], ML [1990]

• Higher-order functions
C#3.0 [2007], Java 8 [2014], LISP [1958]

• Type inference
C++11 [2011], Java 7 [2011] and 8, ML [1990]

• What's next?

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Functional languages in the real world

• Java 8

• F#, C# 3.0, LINQ

• Scala

• Haskell

• Erlang

• OCaml
https://ocaml.org/learn/companies.html

https://ocaml.org/learn/companies.html

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Elegant

Elegant

Beautiful

FINAL MATTERS

What next?

• Follow-on courses:
– CS 4110 Programming Languages and Logics (how to define and

reason about programming languages)
– CS 4120 Compilers (how to implement programming languages)
– CS 4160 Formal Verification (a whole course on Coq!)
– CS 5150/5152 Software Engineering (build for real clients)

• Learn another functional language?
– Racket or Haskell

• Join the course staff?
– CS department collects applications
– Apply now to be on my staff for Fall 2019: We seek a diverse course

staff of people who want to give back to the community and can
speak from their successes as well as struggles

What next?

• Stay in touch
– Tell me when 3110 helps you out with future courses (or jobs!)

– Ask me cool PL questions
– Drop by to tell me about the rest of your time in CS (and

beyond!)… I really do like to know

• Crossing the finish line is just the beginning of the next
race…
DO AMAZING THINGS WITH YOUR LIFE

Upcoming events

• Course evals

• [Saturday 5/11 2pm] Final Exam

This is ...

This is victory.

THIS
HAS BEEN

3110

