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Attendance question

Pick one of the following theorems.  Then, a year from now, either you 
have to pay $10k or you get $10k.  
• You pay if the theorem you picked turns out to have been discovered 

during that year to be demonstrably false.  
• You get $10k otherwise.

A. A theorem you proved (and got full credit for) on a CS 2800 
homework.

B. Chapter 2 of Prof. Foster’s PhD dissertation.
C. The Coq theorem that the CompCert compiler correctly compiles the 

C programming language to x86.
D. The Pythagorean Theorem (a2 + b2 = c2).
E. None of the above

Discussion:  why???



Review

Previously in 3110:

• Functional programming in Coq
• Logic in Coq
• Proofs are programs
• Induction in Coq

Today:  Verification and extraction
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Theorems and test cases

• Do I have the right ones?

• Do I have enough?
• What am I missing?

… there are no great answers to these questions, 
only methodologies that help



ALGEBRAIC SPECIFICATION



Stack

module type Stack = sig
type 'a t
val empty    : 'a t
val is_empty : 'a t -> bool
val size     : 'a t -> int
val peek     : 'a t -> 'a option
val push     : 'a -> 'a t -> 'a t
val pop      : 'a t -> 'a t option

end



Categories of operations

• Creator:  creates value of type "from scratch" 
without any inputs of that type

• Producer:  takes value of type as input and 
returns value of type as output

• Observer:  takes value of type as input but does 
not return value of type as output
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Algebraic specification

aka equational specification

is_empty empty = true

creators
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Stack

module type Stack = sig
type 'a t
val empty    : 'a t
val is_empty : 'a t -> bool
val size     : 'a t -> int
val peek     : 'a t -> 'a option
val push     : 'a -> 'a t -> 'a t
val pop      : 'a t -> 'a t option

end

Discussion:  invent equational specification for stacks



Stack specification

• is_empty empty = true
• is_empty (push _ _) = false
• peek empty = None
• peek (push x _) = Some x
• size empty = 0
• size (push _ s) = 1 + size s
• pop empty = None
• pop (push _ s) = Some s



VERIFICATION AND EXTRACTION

Demo



SPECIFICATION WITH INDUCTIVE 
PROPOSITIONS



Factorial

• Precondition:  n >= 0
• Postcondition:  fact n = n!

• Problem:  how to express ! in Coq?

Demo



Specifying factorial as a relation

factorial_of(0, 1)
Axiom: what is 
factorial of zero?

factorial_of(a+1, (a+1)*b)

factorial_of(a, b) Inference rule: 
what is factorial 
of successor?

Demo



DEPARTMENT OF 

REDUNDANCY
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SPECIFICATION WITH REFERENCE 
IMPLEMENTATIONS

Demo



Upcoming events

[Today] Foster out of town, no Office Hours
[Today] A9 released (it will be fun, short)
[Friday] A8 due

This is verified.

THIS IS 3110


