110
CS3

Verification in Coq

Rachit Nigam
Spring 2019

Attendance question

Pick one of the following theorems. Then, a year from now, either you
have to pay $10k or you

* You pay if the theorem you picked turns out to have been discovered
during that year to be demonstrably false.

S$10k otherwise.

A. A theorem you proved (and got full credit for) on a CS 2800
homework.

Chapter 2 of Prof. Foster’s PhD dissertation.

C. The Coqg theorem that the CompCert compiler correctly compiles the
C programming language to x86.

D. The Pythagorean Theorem (a2 + b? = ¢?).
None of the above

&

m

Review

Previously in 3110:
* Functional programming in Coq
* Logicin Coq

* Proofs are programs

* Induction in Coq

Today: Verification and extraction

Coq for program verification

guidance with tactics

Y

Verified
OCaml
program

Proof of
theorem

Coq for program verification

guidance with tactics

Y

Verified
OCaml
program

Proof of
theorem

Coq for program verification

e =1 o

‘!vr

' . guidance with tactics

@ole
theorem

_i

N

Thisis the
hard part

Theorems and test cases

* Do | have the right ones?
* Do | have enough?

* What am | missing?

ALGEBRAIC SPECIFICATION

Stack

module type Stack = sig
type 'a t
val empty : 'a t
val is empty ‘a t -> bool
val size 'a t -> int
val peek 'a t -> 'a option
val push 'a -> 'at > 'at
val pop 'a t -> 'a t option

end

Categories of operations

* Creator: creates value of type "from scratch”
without any inputs of that type

* Producer: takes value of type as input and
returns value of type as output

* Observer: takes value of type as input but does
not return value of type as output

Stack

module type Stack = sig

type 'a t /m

val empty : 'a t

val is empty : 'a t -> bool iﬂ%ﬂ&g
val size : 'a t -> int

val peek : 'a t -> 'a option
val push : 'a -> 'at -> 'at
val pop : 'at -> '"a t option

end
producers

Algebraic specification

aka eguational specification

1s empty empty = true

creators s = producers

observers

Stack

module
type
val
val
val
val
val
val

end

type Stack
‘a t
empty
1s empty
size
peek
push

pop

sig

t

t -> bool

t -> int

t -> 'a option
-> 'at -> 'a t
t -> 'a t option

Discussion: invent equational specification for stacks

Stack specification

empty
(push

empty = None

(push x)

empty = 0
(push s)

° pop empty = None

* pop (push s)

true
) = false

Some X

1 + size s

Some s

VERIFICATION AND EXTRACTION

Demo

SPECIFICATION WITH INDUCTIVE
PROPOSITIONS

Factorial

* Precondition: n >= 0
e Postcondition: fact n = n!

* Problem: how to express ! in Coq?

Specifying factorial as a relation

factorial _of(0, 1)

factorial _of(a, b)

factorial _of(

, (a+1)*Db)

Axiom: what is
factorial of ?

Inference rule:
what is factorial
of ?

Demo

DEPARTMENT OF

REDUNDANCY
DEPARTMENT

SPECIFICATION WITH REFERENCE
IMPLEMENTATIONS

Demo

Upcoming events

L d

‘Today] Foster out of town, no Office Hours
‘Today] A9 released (it will be fun, short)
Friday] A8 due

This is verified.

THIS IS 3110

