
Verification in Coq

Rachit Nigam
Spring 2019

Attendance question

Pick one of the following theorems. Then, a year from now, either you
have to pay $10k or you get $10k.
• You pay if the theorem you picked turns out to have been discovered

during that year to be demonstrably false.
• You get $10k otherwise.

A. A theorem you proved (and got full credit for) on a CS 2800
homework.

B. Chapter 2 of Prof. Foster’s PhD dissertation.
C. The Coq theorem that the CompCert compiler correctly compiles the

C programming language to x86.
D. The Pythagorean Theorem (a2 + b2 = c2).
E. None of the above

Discussion: why???

Review

Previously in 3110:

• Functional programming in Coq
• Logic in Coq
• Proofs are programs
• Induction in Coq

Today: Verification and extraction

Coq for program verification

Coq
program

Coq
theorem

guidance with tactics

Proof of
theorem

Verified
OCaml

program

Coq for program verification

Coq
program

Coq
theorem

guidance with tactics

Proof of
theorem

Verified
OCaml

program

Coq for program verification

Coq
program

Coq
theorem

guidance with tactics

Proof of
theorem

Verified
OCaml

program

This is the
hard part

Theorems and test cases

• Do I have the right ones?

• Do I have enough?
• What am I missing?

… there are no great answers to these questions,
only methodologies that help

ALGEBRAIC SPECIFICATION

Stack

module type Stack = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val size : 'a t -> int
val peek : 'a t -> 'a option
val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a t option

end

Categories of operations

• Creator: creates value of type "from scratch"
without any inputs of that type

• Producer: takes value of type as input and
returns value of type as output

• Observer: takes value of type as input but does
not return value of type as output

Stack

module type Stack = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val size : 'a t -> int
val peek : 'a t -> 'a option
val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a t option

end

creator

producers

observers

Algebraic specification

aka equational specification

is_empty empty = true

creators

observers

producers

Stack

module type Stack = sig
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val size : 'a t -> int
val peek : 'a t -> 'a option
val push : 'a -> 'a t -> 'a t
val pop : 'a t -> 'a t option

end

Discussion: invent equational specification for stacks

Stack specification

• is_empty empty = true
• is_empty (push _ _) = false
• peek empty = None
• peek (push x _) = Some x
• size empty = 0
• size (push _ s) = 1 + size s
• pop empty = None
• pop (push _ s) = Some s

VERIFICATION AND EXTRACTION

Demo

SPECIFICATION WITH INDUCTIVE
PROPOSITIONS

Factorial

• Precondition: n >= 0
• Postcondition: fact n = n!

• Problem: how to express ! in Coq?

Demo

Specifying factorial as a relation

factorial_of(0, 1)
Axiom: what is
factorial of zero?

factorial_of(a+1, (a+1)*b)

factorial_of(a, b) Inference rule:
what is factorial
of successor?

Demo

DEPARTMENT OF

REDUNDANCY
DEPARTMENT

SPECIFICATION WITH REFERENCE
IMPLEMENTATIONS

Demo

Upcoming events

[Today] Foster out of town, no Office Hours
[Today] A9 released (it will be fun, short)
[Friday] A8 due

This is verified.

THIS IS 3110

