110
CS3

Proofs are Programs

Timmy Zhu
Spring 2019

Today’s music: Proof by Paul Simon

Review

Previously in 3110:
* Functional programming in Coq
* Logicin Coq

Today: A fundamental idea that goes by many
names...

* Propositions as types

* Curry-Howard(-Lambek) isomorphism (aka
correspondence)

* Brouwer—Heyting—Kolmogorov interpretation

Types = Propositions

ACT I

Three innocent functions

let apply £f x = £ x

let const x = fun -> X

let subst x y zZ X z2 (y 2)

Three innocent functions

let apply £f x = £ x
('a -=> 'b) -> 'a -> 'b
let const x = fun -> x
: 'a -> 'b -> 'a
let subst x vy zZ
('a -=> 'b -> ')

-> ('a => 'b) -> 'a => 'c

|
P
N
N
N

Three innocent functions

('a => 'b) -=> 'a =>

Three innocent funetions propositions

('a = 'b) > 'a="b
|a: lb: |a

(la: 'b: 'C)
:(la: lb): |a: 'C

Three innocent funetions propositions

(A => B) > A= B
A= B = A

(A= B = C(C)
= (A= B) > A= C

Three innocent funetions propositions

(A > B) > A= B
A > (B> A)

(A= (B= C))
>((A=> B) = (A > C))

A Sound and Complete Axiomatization for Propositional
Logic

Consider the following axiom schemes:
A= (B= A)
(A= (B=0C))= (A= B)= (A= ())
A3. (A= B)= ((A= —-B) = -A)

These are axioms schemes: each one encodes an infinite set of
axioms:

» P=(Q=P), (P=R)=(Q= (P= R)) are instances of
Al.

Theorem: Al, A2, A3 + modus ponens give a sound and
complete axiomatization for formulas in propositional logic
involving only = and —.

source: hetp.//www.cs.cornell.edu/courses/cs2800/20161a/lectures/2800/ogic.pdf

Modus Ponens

A= B
A

B

source: hetp.//www.cs.cornell.edu/courses/cs2800/20161a/lectures/2800/ogic.pdf

Three innocent functions/propositions

let apply £ x = £ XM

(A> B) > A > B

let const x = fun -> X

ro o n —

let subst x y z X z (y 2)
(A= (B> (C))
=>((A => B) > (A= (C))

T

Types and propositions

Logical propositions can be read as program types,
and vice versa

Type variable 'a Atomic proposition A

Function type —> Implication =

Conjunction and truth

let
let
let

let

fst (a,b) = a
'‘a * 'b -> 'a
snd (a,b) = Db
'‘a * 'b -> 'b

a

pair a b = (a,b)
'a -=> 'b -> 'a * 'b
tt = ()

Conjunction and truth

(A A B) = A
(A A B) = B
A = (B= (A A B))

true

Types and propositions

Type variable 'a Atomic proposition A
Function type —> Implication =
Product type * Conjunction A

unit True

Disjunction

type ('a,'b) or' = Left of 'a | Right of 'b

let left (x:'a) = Left x
'‘a -=> ('a, 'b) or'

let right (y:'b) = Right y
'b -=> ('a, 'b) or'

let match' (fl:'a -> 'c) (f2:'b -> 'c) = function
| Left vl -> f1 vl

| Right v2 -> f2 v2
(‘'a -=> 'c¢) => ('b -> '¢c) -> ('a, 'b) or' -> 'c

Disjunction

A = (A V B)

B = (A V B)

(A =C) = (B=>C) = (AV B) = C

Types and propositions

Type variable 'a Atomic proposition A
Function type —> Implication =
Product type * Conjunction A

unit True

Tagged union Disjunction V

False and negation also possible; see slides at end

Program types

and

logical propositions

are fundamentally the same idea

Programs = Proofs

ACT I

Innocent typing rule

* Recall typing contexts and judgements [lec18]

— Typing context T is a map from variable names to

types
— Typing judgment T | e : t says that e has type t in
context T

* Typing rule for function application:
—ifTFel ¢ t => u
—andTFHe2 : t
—thenTFHel e2 : u

Innocent typing rule

If TrFHel : t -> u
TFHe2 : t

and

then TFHel e2 : u

Innocent typing rule

If TrFHel : t -=> u
TFHe2 : t

and

then TFHel €2 : u

Innocent typing rule

if t -> u
and t

then u

Innocent typing rule

if t > u
and t
then u

Modus Ponens

A= B
A

B

INTERMISSION

Logical proof systems

* Ways of formalizing what is provable
* Which may differ from what is true or decidable

* Two styles:
— Hilbert:

* lots of axioms
* few inference rules (maybe just modus ponens)

— Gentzen:
* lots of inference rules (a couple for each operator)
* few axioms

Inference rules

P, P, .P

Q

* From premisesP,, P,, .., P,
* Infer conclusion Q

* Express allowed means of /nference or deductive
reasoning

* Axiomis an inference rule with zero premises

Judgments

A, A, .. A B

n

* From assumptions A,, A,, ..., A,

— traditional to write I for set of assumptions
* Judge that B is derivable or provable

* Express allowed means of Aypothetical reasoning

e [, AF Aisan axiom

Inference rules for = and A

I, A-B I'FA=B IFA
= Iintro = elim
I HFA=>B I'-B
I'HFAAB
Aelim 1
I'HFA 1B A
A Intro
I'HFAAB C'FAAB
Aelim?2

I'+B

Introduction and elimination

* Introduction rules say how to definean operator
* Elimination rules say how to usean operator

* Gentzen's insight: every operator should come
with intro and elim rules

BACK TO THE SHOW

Innocent typing rule

if
and
then

TFel t -=> u

THe2 t

TFHel e2 : u

TEel t => u THe?2 t
TFHel e2 u

Innocent typing rule

if
and
then

T+ t -=> u

T t

T u

TFE t => u T
T+ u

Innocent typing rule

if
and
then

= elim

T+ t -=> u

TH t

'+ t 2> u I
I u

Computing with evidence

* Modus ponens (aka = elim) is a way of computing with evidence
— Given evidence e2 that t holds

— And given a way el of transforming evidence for t into evidence for u

— MP produces evidence for u by applying el to e2

* Soel e2isaprogram.. and a proof!

TFel ¢t ->u TkreZ2 ¢ t

THel e2 : u

More typing rules

I.x:tkFezu

I'HFfun x -> e ¢ t -> u

['Fel:tl ['Fe2:t2

I'F (el,e2) : tl*t2

More typing rules

I, tF u

= INtro
I + t =2 u

'+ tl '+ t2

A Intro
I t1NAt2

More computing with evidence

I.x:tkFezu

I'HFfun x -> e ¢ t -> u

given evidence e for u predicated on evidence x for t, produce an evidence transformer

['Fel:tl ['Fe2:t2

I'F (el,e2) : tl*t2

given evidence e1 for t1i, produce combined evidence for both

Even more typing rules

I'Fe : tl1*t2

I'HFfst e ¢ t1l

I'Fe ¢ t1*t2

I'HFsnd e ¢ t2

Even more typing rules

[+ t1At2

Aelim 1
[+ tl
I + t1At2

Aelim?2

I+ t2

Even more computing with evidence

I'Fe : tl1*t2

I'HFfst e ¢ t1l

I'Fe ¢ t1*t2

I'Fksnd e : t2

given evidence e for both t i, project out the evidence for one of them

Programs and proofs

* A well-typed program demonstrates that there is at
least one value for that type

— i.e. the that type is inhabited
— a program is a proof that the type is inhabited
* A proof demonstrates that there is at least one way
of deriving a formula

— i.e. that the formula is provable by manipulating
assumptions and doing inference

— a proof is a program that manipulates evidence

Coq proofs are programs

Theorem apply
forall A B : Prop, (A -> B) -> A -> B.
Proof.

intros A B f x. apply f. assumption.
Qed.

Print apply.
apply =
fun (A B : Prop) (f ¢: A -> B) (x : A)
=> f x
forall A B : Prop,
(A -> B) -=> A -> B

Programs

and

Proofs

are fundamentally the same idea

Evaluation = Simplification

ACT 1l

Many proofs/programs

A given proposition/type could have many proofs/programs.

Proposition/type:
c A= (B> (AAB))
e 'a -> ('b -> ('a * 'b))

Proofs/programs:

e fun x -> fun y ->
(fun z -> (snd z, fst z)) (y,X)

° fun x -> fun y -> (snd (y,x), fst

(Y,X))
e fun x -> fun y -> (x,Vy)

Many proofs/programs

Body of each proof/program:
* (fun z -> (snd z, fst z)) (y,X)
* (snd (y,x), fst (y,x))

* (X,Y)

Each is the result of small-stepping the previous
..and in each case, the proof/program gets simpler

Program evaluation

and
proof simplification

are fundamentally the same idea

CONCLUSION

These are all the same ideas

Types Propositions
Programs Proofs
Evaluation Simplification

Computation Is reasoning
Functional programming is fundamental

Upcoming events

* N/A

This is fundamental,

THIS IS 3110

Read "void" as "false".

False Read 'a.'a as (Vx. x), which is false.

type void = {nope : 'a .'a}

let £ff1l = {nope = let rec £f x = £f x in £ ()}
: void

let £ff2 = {nope failwith ""}

¢ void

Both ££1 and ££2 type check, but

neither successfully completes
evaluation: not possible to create a
value of type void

Read "void" as "false".

False Read 'a.'a as (Vx. x), which is false.

type void = {nope : 'a .'a}

let £ff1l = {nope = let rec £f x = £f x in £ ()}
: void

let ff2 = {nope
void

failwith ""}

let explode (f:void) : 'b = f.nope

void -> 'b

False

false = B

Negation

* Syntactic sugar: define -A as A=false
* Asatype, that wouldbe 'a -> void

Types and propositions

Type variable 'a Atomic proposition A
Function type —> Implication =
Product type * Conjunction A

unit True

Tagged union Disjunction V

Type with no values False

(syntactic sugar) Negation -

