
Formal Methods

Today’s music: Theme from Downton Abbey by John Lunn

Nate Foster
Spring 2019

Review
Previously in 3110:
• Functional programming
• Modular programming
• Data structures
• Interpreters

Next unit of course: formal methods

Today:
• Proof assistants
• Functional programming in Coq
• Propositional logic
• Simple proofs about programs

Approaches to validation [lec 11]
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– Static analysis

(“lint” tools, FindBugs, …)
– Fuzzers

• Mathematical
– Sound type systems
– “Formal” verification

More formal: eliminate
with certainty as many problems
as possible.

Less formal: Techniques may
miss problems in programs

All of these methods should be used!

Even the most formal can still
have holes:
• did you prove the right thing?
• do your assumptions match reality?

Verification

• In the 1970s, scaled to about tens of LOC
• Now, research projects scale to real software:
– CompCert: verified C compiler
– seL4: verified microkernel OS
– Ynot: verified DBMS, web services
– NetCore: software-defined network controller

• In another 40 years?

Coq

• 1984: Coquand and Huet implement Coq based
on calculus of inductive constructions

• 1992: Coq ported to Caml
• Now implemented in OCaml

Thierry Coquand
1961 –

Coq for program verification

Coq
program

Coq
theorem

guidance with tactics

Proof of
theorem

Verified
OCaml

program

Coq's full system

Subset of Coq we'll use

Our goals
• Write basic functional programs in Coq

– no side effects, mutability, I/O
• Prove simple theorems in Coq

– CS 3110 programs: lists, options, trees
– CS 2800 mathematics: induction, logic

• Non goal: full verification of large programs
• Rather:

– help you understand what verification involves
– expose you to the future of functional programming
– solidify concepts about proof and induction by developing

machine-checked proofs

FUNCTIONAL PROGRAMMING IN
COQ

Definitions and Functions
Lists

Demo

INDUCTION

Structure of inductive proof
Theorem:
for all natural numbers n, P(n).

Proof: by induction on n

Case: n = 0
Show: P(0)

Case: n = k+1
IH: P(k)
Show: P(k+1)

QED

Sum to n

let rec sum_to n =
if n=0 then 0
else n + sum_to (n-1)

Theorem:
for all natural numbers n,

sum_to n = n * (n+1) / 2.

Proof: by induction on n

Discussion: What is P? Base case? Inductive case? Inductive
hypothesis?

nX

i=0

i

Proof

P(n) ≡ (sum_to n = n * (n+1) / 2)

Case: n = 0
Show:
P(0)

Case: n = k+1
IH: P(k) ≡ sum_to k = k * (k+1) / 2
Show:
P(k+1)

QED

let rec sum_to n =
if n=0 then 0
else n + sum_to (n-1)

INDUCTION ON LISTS

Structure of inductive proof
Theorem:
for all natural numbers n, P(n).

Proof: by induction on n

Case: n = 0
Show: P(0)

Case: n = k+1
IH: P(k)
Show: P(k+1)

QED

Structure of inductive proof
Theorem:
for all lists lst, P(lst).

Proof: by induction on lst

Case: lst = []
Show: P([])

Case: lst = h::t
IH: P(t)
Show: P(h::t)

QED

Append nil

let rec (@) lst1 lst2 =
match lst1 with
| [] -> lst2
| h::t -> h :: (t @ lst2)

Theorem:
for all lists lst, lst @ [] = lst.

Proof: by induction on lst

Discussion: What is P? Base case? Inductive case? Inductive
hypothesis?

Base case
P(lst) ≡ lst @ [] = lst

Case: lst = []
Show:
P([])

Case: lst = h::t
IH: P(t) ≡ t @ [] = t
Show:
P(h::t)

QED

let rec (@) lst1 lst2 =
match lst1 with
| [] -> lst2
| h::t -> h :: (t @ lst2)

INDUCTION ON LISTS IN COQ

Demo

PROPOSITIONAL LOGIC

Logical connectives

• Implication: p -> p
• Conjunction: p /\ p
• Disjunction: p \/ p
• Negation: ~p

Demo

Implication

Print p_implies_p.
p_implies_p =
fun (P : Prop) (P_assumed : P) => P_assumed

: forall P : Prop, P -> P

p_implies_p
is a function

second input is
proof of first input

first input is a
proposition

output is that proof

Coq proofs
are

functional programs

Upcoming events

• [Last night] A8 out!
• [Today] Foster Office Hours @ 1:15pm

This is formal.

THIS IS 3110

