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Review
Previously in 3110:
• Functional programming 
• Modular programming
• Data structures
• Interpreters

Next unit of course:  formal methods

Today:
• Proof assistants
• Functional programming in Coq
• Propositional logic
• Simple proofs about programs



Approaches to validation [lec 11]
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– Static analysis

(“lint” tools, FindBugs, …)
– Fuzzers

• Mathematical
– Sound type systems
– “Formal” verification

More formal:  eliminate 
with certainty as many problems 
as possible.

Less formal:  Techniques may 
miss problems in programs

All of these methods should be used!

Even the most formal can still
have holes:
• did you prove the right thing?
• do your assumptions match reality?



Verification

• In the 1970s, scaled to about tens of LOC
• Now, research projects scale to real software:
– CompCert:  verified C compiler
– seL4:  verified microkernel OS
– Ynot:  verified DBMS, web services
– NetCore: software-defined network controller

• In another 40 years?



Coq

• 1984: Coquand and Huet implement Coq based 
on calculus of inductive constructions

• 1992: Coq ported to Caml
• Now implemented in OCaml

Thierry Coquand
1961 –



Coq for program verification

Coq 
program

Coq 
theorem

guidance with tactics

Proof of 
theorem

Verified 
OCaml

program



Coq's full system



Subset of Coq we'll use



Our goals
• Write basic functional programs in Coq

– no side effects, mutability, I/O
• Prove simple theorems in Coq

– CS 3110 programs:  lists, options, trees
– CS 2800 mathematics:  induction, logic

• Non goal:  full verification of large programs
• Rather:

– help you understand what verification involves
– expose you to the future of functional programming
– solidify concepts about proof and induction by developing 

machine-checked proofs



FUNCTIONAL PROGRAMMING IN 
COQ

Definitions and Functions
Lists

Demo



INDUCTION



Structure of inductive proof
Theorem:  
for all natural numbers n, P(n).

Proof: by induction on n

Case:  n = 0
Show:  P(0)

Case:  n = k+1
IH:    P(k)
Show:  P(k+1)

QED



Sum to n

let rec sum_to n =
if n=0 then 0
else n + sum_to (n-1)

Theorem:  
for all natural numbers n, 

sum_to n = n * (n+1) / 2.

Proof: by induction on n

Discussion:  What is P?  Base case? Inductive case?  Inductive 
hypothesis?

nX
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Proof

P(n) ≡ (sum_to n = n * (n+1) / 2)

Case:  n = 0
Show:  
P(0)

Case:  n = k+1
IH:    P(k) ≡ sum_to k = k * (k+1) / 2
Show:  
P(k+1) 

QED

let rec sum_to n =
if n=0 then 0
else n + sum_to (n-1)



INDUCTION ON LISTS



Structure of inductive proof
Theorem:  
for all natural numbers n, P(n).

Proof: by induction on n

Case:  n = 0
Show:  P(0)

Case:  n = k+1
IH:    P(k)
Show:  P(k+1)

QED



Structure of inductive proof
Theorem:  
for all lists lst, P(lst).

Proof: by induction on lst

Case:  lst = []
Show:  P([])

Case:  lst = h::t
IH:    P(t)
Show:  P(h::t)

QED



Append nil

let rec (@) lst1 lst2 =
match lst1 with
| [] -> lst2 
| h::t -> h :: (t @ lst2)

Theorem:  
for all lists lst, lst @ [] = lst.

Proof: by induction on lst

Discussion:  What is P?  Base case? Inductive case?  Inductive 
hypothesis?



Base case
P(lst) ≡ lst @ [] = lst

Case:  lst = []
Show:  
P([])

Case:  lst = h::t
IH:    P(t) ≡ t @ [] = t
Show:  
P(h::t)

QED

let rec (@) lst1 lst2 =
match lst1 with
| [] -> lst2 
| h::t -> h :: (t @ lst2)



INDUCTION ON LISTS IN COQ

Demo



PROPOSITIONAL LOGIC



Logical connectives

• Implication:  p -> p
• Conjunction:  p /\ p
• Disjunction:  p \/ p
• Negation:  ~p

Demo



Implication

Print p_implies_p.
p_implies_p =
fun (P : Prop) (P_assumed : P) => P_assumed

: forall P : Prop, P -> P

p_implies_p
is a function

second input is 
proof of first input

first input is a 
proposition

output is that proof



Coq proofs 
are 

functional programs



Upcoming events

• [Last night] A8 out!
• [Today] Foster Office Hours @ 1:15pm

This is formal.

THIS IS 3110


