
Interpreters

Today’s music: Step by Step by New Kids on the Block

Nate Foster
Spring 2019

The Goal of 3110

Become a better programmer
though study of

programming languages

Review

Previously in 3110:
• functional programming
• modular programming
• data structures

Today:
• new unit of course: interpreters

Compiler

Target program

Source program

code as data: the compiler is code that operates on data; that data is itself code

Compiler

Target program

Source program

Input Output

the compiler goes away; not needed to run the program

Interpreter

Source program

Input Output

the interpreter stays; needed to run the program

Compilers:
• primary job is translation
• better performance

Interpreters:
• primary job is execution
• easier implementation

vs.

Compiler

Intermediate program

Source program

Input OutputVirtual machine

Architecture
Two phases:
• Front end: translate source code into abstract syntax

tree (AST) then into intermediate representation (IR)
• Back end: translate AST into machine code

Front end of compilers and interpreters largely the same:
• Lexical analysis with lexer
• Syntactic analysis with parser
• Semantic analysis

Front end

if x=0 then 1 else fact(x-1)
Character stream:

Lexer

if x = 0 then 1 else fact (x - 1)

Token stream:

Front end

if x = 0 then 1 else fact (x - 1)

Token stream:

Parser

if-then-else

x

=

0

1

fact

x

-

1

apply

Abstract syntax tree:

Front end

if-then-else

x

=

0

1

fact

x

-

1

apply

Abstract syntax tree:

Semantic analysis

• accept or reject program
• create symbol tables mapping identifiers to types
• decorate AST with types
• etc.

Next

Might translate AST into a intermediate
representation (IR) that is a kind of abstract
machine code

Then:
• Interpreter executes AST or IR
• Compiler translates IR into machine code

Implementation

Functional languages are well-suited to
implement compilers and interpreters

• Code easily represented by tree data types
• Compilation/execution easily defined by

pattern matching on trees

EXPRESSION INTERPRETER

Arithmetic expressions
Goal: write an interpreter for expressions involving
integers and addition

Path to solution:
• let's assume lexing and parsing is already done
• need to take in AST and interpret it
• intuition:
– an expression e takes a single step to a new

expression e'
– expression keeps stepping until it reaches a value

Demo

Arithmetic expressions

Goal: extend interpreter to let expressions

Path to solution:
• extend AST with a variant for let and for

variables
• add branches to step to handle those
• that requires substitution...

let expressions [from lec 2]

let x = e1 in e2

Evaluation:
– Evaluate e1 to a value v1
– Substitute v1 for x in e2, yielding a new

expression e2’
– Evaluate e2’ to v
– Result of evaluation is v

e{v/x}
means e with v substituted for x

Substitution

Instead of:
"Substitute v1 for x in e2,
yielding a new expression e2’;
Evaluate e2’ to v"

Write:
"Evaluate e2{v1/x} to v"

Demo

Upcoming events

• [Friday 11:59pm]: Team evals due

This is open to interpretation.

THIS IS 3110

