
Monads

Today’s music: Vámanos Pal Monte by Eddie Palmieri

Nate Foster
Spring 2019

Review
Currently in 3110: Advanced data structures
• Streams
• Balanced trees
• Mutability
• Promises

Today:
• Monads

Monad tutorials

source: https://wiki.haskell.org/Monad_tutorials_timeline

since 2011:
another 34 at least

Monad tutorials

"A monad is a monoid object in a category of
endofunctors....It might be helpful to see a
monad as a lax functor from a terminal
bicategory."

Monad tutorials

"A monad is a monoid object in a category of
endofunctors....It might be helpful to see a
monad as a lax functor from a terminal
bicategory."

Monad tutorials

"A monad is a monoid object in a category of
endofunctors....It might be helpful to see a
monad as a lax functor from a terminal
bicategory."

"Monads are burritos." [http://chrisdone.com/posts/monads-are-
burritos]

http://chrisdone.com/posts/monads-are-burritos

Monad
For our purposes:

module type Monad = sig
type 'a t
val bind : 'a t -> ('a -> 'b t) -> 'b t
val return : 'a -> 'a t

end

Any structure that implements the Monad signature is a monad.

What's the big deal???

LOGGABLE FUNCTIONS

Demo

Question
let inc_log x =

(x+1, "incremented " ^ string_of_int x ^ "; ")
let dec_log x =

(x-1, "decremented " ^ string_of_int x ^ "; ")

let id_log = inc_log >> dec_log

Why doesn’t that definition work?
A. It doesn't type check
B. It computes the wrong integer
C. It computes the wrong log message
D. Both B and C

LOGGABLE FUNCTIONS

Demo

Upgrading a function
What if we could upgrade a loggable function to
accept the input from another loggable
function?

upgrade f_log
: int*string -> int*string

Discussion: how could you implement that?

Another kind of upgrade

• Given f : int -> int
• How to make it loggable, but with empty log

message?
• Need to "lift" a function

from int -> int
to int -> int*string

Demo

Types

Consider the types:

val upgrade :
(int -> int * string)

-> int * string -> int * string

val trivial :
int -> (int * string)

Types
Another way of writing those types:
type 'a t = 'a * string

val upgrade :
(int -> int t)

-> int t -> int t

val trivial :
int -> int t

Have you seen those types before???

Types
Let’s swap the argument order of upgrade...

val upgrade :
(int -> int t)
-> int t
-> int t

let upgrade' x f = upgrade f x

val upgrade’ :
int t
-> (int -> int t)
-> int t

Types
type 'a t = 'a * string

val upgrade' :
int t

-> (int -> int t)
-> int t

val trivial :
int -> int t

Have you seen those types before?

Rewriting types
type 'a t = 'a * string

val bind :
int t

-> (int -> int t)
-> int t

val return :
int -> int t

module type Monad = sig
type 'a t
val bind :

'a t
-> ('a -> 'b t)
-> 'b t

val return :
'a -> 'a t

end

Loggable is a monad
module Loggable : Monad = struct
type 'a t = 'a * string
let bind (x,s1) f =
let (y,s2) = f x in
(y,s1^s2)

let return x = (x,"")
end

More often called the writer monad

Stepping back...

• We took functions
• We made them compute something more
– A logging string

• We invented ways to pipeline them together
– upgrade, trivial

• We discovered those ways correspond to the
Monad signature

FUNCTIONS THAT PRODUCE
ERRORS

Functions and errors

A partial function is undefined for some inputs
• e.g., max_list : int list -> int
• with that type, programmer probably intends

to raise an exception on the empty list
– could also produce an option
– or could use variant to encode result…

Dem
o

What are the types?
type 'a t = Val of 'a | Err
val value : 'a -> 'a t
val (|>?) : 'a t -> ('a -> 'b t) -> 'b t

Have you seen those types before???
module type Monad = sig
type 'a t
val bind :

'a t
-> ('a -> 'b t)
-> 'b t

val return :
'a -> 'a t

end

Error is a monad
module Error : Monad = struct
type 'a t = Val of 'a | Err
let return x = Val x
let bind m f =
match m with
| Val x -> f x
| Err -> Err

end

Option is a monad
module Option : Monad = struct
type 'a t = Some of 'a | None
let return x = Some x
let bind m f =
match m with
| Some x -> f x
| None -> None

end

Stepping back...

• We took functions
• We made them compute something more
– A value or possibly an error

• We invented ways to pipeline them together
– value, (|>?)

• We discovered those ways correspond to the
Monad signature

LWT

Lwt is a monad
module Lwt : sig
type 'a t
val return : 'a -> 'a t
val bind : 'a t -> ('a -> 'b t) -> 'b t

end

• return takes a value and returns an immediately resolved
promise

• bind takes a promise, and a callback function, and returns a
promise that results from applying the callback

Stepping back...
• We took functions
• The Lwt library made them compute

something more
– a promised result

• The Lwt library invented ways to pipeline
them together
– return, (>>=)

• Those ways correspond to the Monad
signature

• So we call Lwt a monadic concurrency library

Another view of Monad
module type Monad = sig
(* a "boxed" value of type 'a *)
type 'a t

(* [m >>= f] unboxes m,
* passes the result to f,
* which computes a new result,
* and returns the boxed new result *)
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t

(* box up a value *)
val return : 'a -> 'a t

end

(equate "box" with "tortilla" and you have the burrito metaphor)

SO WHAT IS A MONAD?

Computations
• A function maps an input to an output
• A computation does that and more: it has some effect
– Loggable computation: effect is a string produced for

logging
– Error computation: effect is a possible error instead of a

value
– Option computation: effect is a possible None instead of a

value
– Promised computation: effect is delaying production of

value until later
• A monad is a data type for computations
– return has the trivial effect
– (>>=) does the "plumbing" between effects

Phil Wadler

b. 1956

• A designer of Haskell
• Wrote the paper* on

using monads for
functional
programming

* http://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf

Other monads

• State: modifying the state is an effect
• List: producing a list of values instead of a

single value can be seen as an effect
• Random: producing a random value can be

seen as an effect
• ...

Monad laws
• We expect data types to obey some algebraic

laws
– e.g., for stacks, peek (push x s) = x
– We don't write them in OCaml types, but they're

essential for expected behavior
• Monads must obey these laws:

1. return x >>= f is equivalent to f x
2. m >>= return is equivalent to m
3. (m >>= f) >>= g is equivalent to

m >>= (fun x -> f x >>= g)
• Why? The laws make sequencing of effects work

the way you expect

Monad laws
1. (return x >>= f) = f x

Doing the trivial effect then doing a computation f is the same as
just doing the computation f
(return is left identity of bind)

2. (m >>= return) = m
Doing only a trivial effect is the same as not doing any effect
(return is right identity of bind)

3. ((m >>= f) >>= g)
= (m >>= (fun x -> f x >>= g))

Doing f then doing g as two separate computations is the same as
doing a single computation which is f followed by g

(bind is associative)

Upcoming events

• [Today] Foster OH 1:15-2:15pm

This is effectful.

THIS IS 3110

