
Promises

Today’s music: Call Me Maybe by Carly Rae Jepsen

Nate Foster
Spring 2019

Review
Previously in 3110: Advanced data structures
• Streams
• Balanced binary trees
• Mutable data structures

Today:
• Promises: a data structure and programming

paradigm for concurrency

Concurrency
• Networks have multiple computers
• Computers have multiple processors
• Processors have multiple cores

...all working semi-independently

...all sharing resources

sequential: non-overlapping in duration
concurrent: overlapping in duration
• parallel: happening at the same time
• interleaved: rapidly switching between

Concurrency
At any given time, my laptop is...
• Streaming music
• Running a web server
• Syncing with web services
• Running OCaml

The OS plays a big role in making it look like
those all happen simultaneously

Concurrency

Applications might also want concurrency:
• Web server that handles many clients at once
• Scientific calculations that exploit parallel

architecture to get speedup
• GUIs that want to respond to users while

doing computation (e.g., rendering) in the
background

Programming models for concurrency
Threads: sequential code for computation
Pthreads, OpenMP, java.lang.Thread
OCaml Thread

Promises: values that are promised to be computed
async/await in JavaScript and .NET, java.util.concurrent.Future,
Clojure, Scala
OCaml Async and Lwt

(and many others)

PROMISES

Promises
Computation that promises to produce a value
sometime in the future

Aka:
• future
• delayed
• deferred

Lwt: OCaml library for promises

Promises

A promise – 'a Lwt.t – is like a box:
• It starts out empty
• At some point in the future, it could be filled

with a value of type 'a
• Once it's filled, the box's contents can never

be changed ("write once")

Resolver

A resolver – 'a Lwt.u – is what fills the box

Terminology:
• promise is pending aka sleeping: box is empty
• promise is resolved aka returned: box is full
• promise is rejected aka failed: box contains exn

Demo

pending
/

sleeping

resolved
/

returned

rejected
/

failed

Discussion: implement signature for promises

resolve/wakeup

reject/wakeup_exn

Digression on Cornell history

• ivars = promises+resolvers
• Used for parallel computing in language

called Id [Arvind, Nikhil, and Pingali
1986]
– Keshav Pingali, Cornell CS prof 1986-2006?

• Implemented in Concurrent ML by John
Reppy (Cornell PhD 1992)

Lwt

Typical use of library is to do asynchronous I/O
• Launch an I/O operation as a promise
• OS helps to resolve promise

Source of parallelism: OS, not OCaml

Demo

CALLBACKS
call me maybe?

Managing Promises

What if program has many promises "in flight"?
• Web server handling many client
• Spreadsheet updating many cells
• Game updating many enemies

Need a way to manage dependencies of
computations upon promises…

Demo

bind promise callback

bind :
'a Lwt.t
-> ('a -> 'b Lwt.t)
-> 'b Lwt.t

promise >>= callback

(>>=) :
'a Lwt.t
-> ('a -> 'b Lwt.t)
-> 'b Lwt.t

Demo

Implementing bind

• Store a list of callbacks with each promise
• After promise is resolved, Lwt runs callbacks
• If promise never resolved (or fails), no callback

Callback execution

• Single-threaded: one callback runs at a time
• Cooperative: callback runs to completion
• Nondeterministic: unspecified which runs first

Upcoming events

• [Tomorrow] A5 released

This is resolved.

THIS IS 3110

