
Mutable Data Types
A New Despair

Mutability Strikes Back
Return of Imperative Programming

Today’s music: The Imperial March
from the soundtrack to Star Wars, Episode V: The Empire Strikes Back

Greg Morrisett
Spring 2019

Review

Previously in 3110:
• Advanced data structures
– Streams and laziness
– Balanced binary trees

Today: THE DARK SIDE ARRIVES
• Mutable data types: refs, mutable fields, (arrays)

REFS

Demo

References

• Aka “refs” or “ref cell”
• Pointer to a typed location in memory
• The binding of a variable to a pointer is

immutable but the contents of the memory
may change

References
• Syntax: ref e
• Evaluation:
– Evaluate e to a value v
– Allocate a new location loc in memory to hold v
– Store v in loc
– Return loc
– Note: locations are values; can pass and return from

functions
• Type checking:
– New type constructor: t ref where t is a type

• Note: ref is used as keyword in type and as keyword in value
– ref e : t ref if e : t

References
• Syntax: e1 := e2
• Evaluation:
– Evaluate e2 to a value v2
– Evaluate e1 to a location loc
– Store v2 in loc
– Return ()

• Type checking:
– If e2 : t
– and e1 : t ref
– then e1:=e2 : unit

References

• Syntax: !e
– note: not negation

• Evaluation:
– Evaluate e to loc
– Return contents of loc

• Type checking:
– If e : t ref
– then !e : t

Aliases
References may create aliases:

let x = ref 42
let y = ref 42
let z = x
let () = x := 43
let w = (!y) + (!z)

z and x are aliases

Equality
• Suppose we have two refs...
– let r1 = ref 3110
– let r2 = ref 3110

• Double equals is physical equality
– r1 == r1
– r1 != r2

• Single equals is structural equality
– r1 = r1
– r1 = r2
– ref 3110 <> ref 2110

• You usually want single equals

EXAMPLE: COUNTER

Demo

Semicolon
• Syntax: e1; e2
• Evaluation:
– Evaluate e1 to a value v1
– Then throw away that value

(note: e1 could have side effects)
– evaluate e2 to a value v2
– return v2

• Type checking:
– If e1 : unit
– and e2 : t
– then e1; e2 : t

Scope matters
(* correct *)
let next_val =

let counter = ref 0
in fun () ->

incr counter;
!counter

(* faulty *)
let next_val = fun () ->

let counter = ref 0
in incr counter;

!counter

MUTABLE FIELDS

Demo

Implementing refs
Ref cells are essentially syntactic sugar:

type 'a ref = { mutable contents: 'a }
let ref x = { contents = x }
let (!) r = r.contents
let (:=) r newval = r.contents <- newval

• That type is declared in Pervasives
• The functions are compiled down to something equivalent

BEWARE

Immutable lists
We have never needed to worry about aliasing with lists!
let x = [2;4]
let y = [5;3;0]
let z = x @ y

x

y

z

2 4

5 3 0

2 4

x 2 4

y

z

5 3 0

2 4 5 3 0

vs.

(no code you write could ever tell, but OCaml implementation uses the first one)

OCaml:
blissfully unaware of aliasing

Java:
obsession with aliasing

Faulty code
class ProtectedResource {

private Resource theResource = ...;
private String[] allowedUsers = ...;
public String[] getAllowedUsers() {

return allowedUsers;
}
public String currentUser() { ... }
public void useTheResource() {

for(int i=0; i < allowedUsers.length; i++) {
if(currentUser().equals(allowedUsers[i])) {

... // access allowed: use it
return;

}
}
throw new IllegalAccessExcpetion();

}
}

Discussion: Can you find the security fault?

Have to make copies

public String[] getAllowedUsers() {
… return a copy of allowedUsers …

}

The fix:

The problem:

p.getAllowedUsers()[0] = p.currentUser();
p.useTheResource();

Similar errors as recent as Java 1.7beta

Benefits of immutability
• Programmer doesn’t have to think about aliasing; can concentrate

on other aspects of code
• Language implementation is free to use aliasing, which is cheap
• Often easier to reason about whether code is correct
• Perfect fit for concurrent programming

But there are downsides:
• I/O is fundamentally about mutation
• Some data structures (hash tables, arrays, …) are more efficient if

imperative

Try not to abuse your new-found power!

Upcoming events

• N/A

This is (reluctantly) imperative.

THIS IS 3110

