
Streams and Laziness

Today’s music: "Lazy Days" by Shwayze

Nate Foster
Spring 2019

Attendance question
What is the type of f?

let rec f x = f x

A. Doesn't compile
B.'a -> 'a
C.'a -> 'b
D.unit -> unit

Review
Previously in 3110:
• Functional programming
• Modular programming

Third unit of course: Data structures

Today:
• Streams
• Laziness

INFINITE LISTS

Demo

Discussion

How can an infinite length list fit in a finite
computer memory?

"Infinite" data structures

• Sequences of numbers: the naturals, primes,
Fibonacci, …

• Data processed by a program: from a file, from
the user, from the network

• Game tree (for some games):
– nodes = game positions
– edges = legal moves

Question
What does nats evaluate to?

(* [from n] is the infinite list [[n; n+1; ...]] *)
let rec from n = n :: from (n+1)

let nats = from 0

A. [0; 1; 2; …]
B. Never terminates (infinite loop)
C. Exception
D. Stack overflow

STREAMS
aka infinite lists, sequences, delayed lists, lazy lists

List representation

(** An ['a mylist] is a finite
list of values of type
['a]. *)

type 'a mylist =
| Nil
| Cons of 'a * 'a mylist

Stream representation?

(** An ['a stream] is an infinite
list of values of type
['a]. *)

type 'a stream =
| Nil
| Cons of 'a * 'a stream

Stream representation?

(** An ['a stream] is an infinite
list of values of type
['a]. *)

type 'a stream =
| Nil
| Cons of 'a * 'a stream

Stream representation?

type 'a stream =
| Cons of 'a * 'a stream

Try coding these if possible:
• the stream of 1's
• the stream of natural numbers

Key idea of this entire lecture:

Delay evaluation

Demo

thunk
fun () -> (* a delayed computation *)

Stream representation
(** An ['a stream] is an infinite list

of values of type ['a].
AF: [Cons (x, f)] is the stream
whose head is [x] and tail is
[f()].

RI: none *)
type 'a stream =
Cons of 'a * (unit -> 'a stream)

Demo

Notation

Write

<a; b; c; …>

to mean stream whose first elements are a, b, c.

Discussion
(** [sum <a1; a2; ...> <b1; b2; ...>]

is [<a1 + b1; a2 + b2; ...>] *)
let rec sum
(Cons (h_a, tf_a))
(Cons (h_b, tf_b))

=
?

Discussion

(** [map f <a; b; c; ...>] is
[<f a; f b; f c; ...>] *)

let rec map f (Cons (h, tf)) =
?

A CUTE FIBONACCI TRICK

Fibonacci
fibs 1 1 2 3 5 8 …

Fibonacci
fibs 1 1 2 3 5 8 …
fibs 1 1 2 3 5 8 …

Fibonacci
fibs 1 1 2 3 5 8 …
tl fibs 1 2 3 5 8 13 …

Fibonacci
fibs 1 1 2 3 5 8 …
tl fibs 1 2 3 5 8 13 …

2 3 5 8 13 21 …

fibs is
1 then
1 then
(fibs + tl fibs)

Fibonacci
let rec fibs =

Cons(1, fun () ->
Cons(1, fun () ->

sum fibs (tl fibs)))

But try: take 100 fibs

Exponential amount of recomputation: regenerate entire
prefix of fibs, twice, for each element produced

Solution: the Lazy module, covered in textbook

Upcoming events
• [tomorrow] A3 due
• [next Tuesday] prelim exam
• 90 minutes
• Early and late seating
• Must bring ID Card
• 5-8 problems
• 1-page handwritten cheat-sheet allowed
• Practice problems posted (see Discourse)
• Review session on Sunday (see Discourse)

This is judiciously lazy.

THIS IS 3110

