
Testing

Today’s music: "Wrecking Ball" by Miley Cyrus

Nate Foster
Spring 2019

Peer Evaluations

SO IMPORTANT TO DO THESE

Review
Previously in 3110:
• Modules
• Specification (functions, modules)

Today:
• Validation
• Testing
– Black box
– Glass box

Validation

• Validation: does program behave as intended?
• Testing: a process for validation
• Debugging: determining cause of unintended

behavior
• Defensive programming: implementation

techniques for making validation and debugging
easier

• Social
– Code reviews
– Extreme/Pair programming

• Methodological
– Test-driven development
– Version control
– Bug tracking

• Technological
– Static analysis

(“lint” tools, FindBugs, …)
– Fuzzers

• Mathematical
– Type systems
– Formal verification

More formal: eliminate
with certainty as many problems
as possible.

Less formal: Techniques may
miss problems in programs

All of these methods should be
used!

Even the most formal can still
have holes:
• did you prove the right thing?
• do your assumptions match reality?

Approaches to validation

Testing vs. Verification
Testing:
• Cost effective
• Guarantee that program is correct on tested

inputs and in tested environments

Verification:
• Expensive
• Guarantee that program is correct on all inputs

and in all environments

Edsger W. Dijkstra

(1930-2002)

Turing Award Winner (1972)

For eloquent insistence and practical
demonstration that programs should be
composed correctly, not just debugged into
correctness

"Program testing can at best show the
presence of errors but never their absence."

Bugs
"bug": suggests something just wandered in

[IEEE 729]
• Fault: result of human error in software system

– E.g., implementation doesn't match design, or design doesn't match
requirements

– Might never appear to end user

• Failure: violation of requirement
– Something goes wrong for end user

Human error Fault Failure

Testing

• Goal is to expose existence of faults, so that
they can be fixed

• Unit testing: isolated components
• Integration testing: combined components
• System testing: functionality, performance,

acceptance, installation

Regression testing

• Regression: a previously fixed fault is
reintroduced into the code

• Regression testing: running tests against new
version of software to ensure no regressions

• If you ever find and fix a fault…
– Put a test case into your suite for it
– Run suite frequently to detect regressions

Testing

When do you stop testing?
• Bad answer: when time is up
• Bad answer: what all tests pass

Fun fact

Pr[undetected faults]
increases

with # detected faults

[Myers 1979, 2004]

Testing

When do you stop testing?
• Good answer: when testing methodology is

complete
• Future answer: statistical estimation says

Pr[undetected faults] is low enough
(active research)

TESTING

Black box testing

Input Output

tester knows nothing about internals of functionality being tested

Glass box testing

Input Output

tester knows internals of functionality being tested

Black box testing

Input Output

tester knows nothing about internals of functionality being tested

Glass box testing

Input Output

tester knows internals of functionality being tested

Black box testing
• Tests are based on the specification
• Advantages:
– Tester is not biased by assumptions made in

implementation
– Tests are robust w.r.t. changes in implementation
– Tests can be read and evaluated by reviewers who are not

implementers
• Main kinds of black box tests:
– Example inputs provided by spec
– Typical inputs
– Boundary cases
– Paths through spec

Typical inputs
• Common, simple values of a type
– int: small integers like 1 or 10
– char: alphabetic letters, digits
– string: whose length is a small integer and

whose characters are typical
– 'a list: a small integer number of elements,

each of which is a typical value of type 'a
– records/tuples: each field/component with a

typical value
– variants: typical constructors, if there is such a

thing

Boundary cases

Boundary cases
• aka corner cases or edge cases
• Atypical or extremal values of a type, and values

nearby
– int: 0, 1, -1, min_int, max_int
– char: '\000', '\255', '\032'(space),
'\127'(delete)

– string: empty string, string with a single character,
unreasonably long string

– 'a list: empty list, list with a single element, list with
enough elements to trigger stack overflow on non-tail-
recursive functions

– records/tuples: combinations of atypical values
– variants: all constructors

Paths through spec
Representative inputs for classes of outputs

(* [is_prime n] is true iff [n] is prime *)
val is_prime: int -> bool

two classes of output:
• true: representative input: n=13
• false: representative input: n=42

other examples:
• compare functions have three classes of output
• functions that return variants have several classes of output

Paths through spec
Representative inputs for each way of satisfying the
precondition

(* [sqrt x n] is the square root of [x]
* computed to an accuracy of [n]
* significant digits
* requires: x >= 0 and n >= 1 *)

val sqrt : float -> int -> float

(i) x=0.0, n=1, (ii) x=1.0, n=1,
(iii) x=0.0, n=2, (iv) x=1.0, n=2

Paths through spec

Representative inputs for each way of raising and
not raising exception

(* [pos x lst] is the 0-based position of
* the first element of [lst] that equals [x].
* raises: Not_found if [x] is not in [lst].

*)
val pos: 'a -> 'a list -> int

(i) x=1, lst=[1], (ii) x=0, lst[1]

Glass box testing
• aka white box testing
• Advantages:
– can determine whether a new test case really yields

additional information about correctness of
implementation

– can address likely errors that are not apparent from
specification

• Supplements black-box testing; does not replace
examination of specification

• Main kind of glass box test cases:
– paths through implementation aka path coverage

Paths through implementation
All execution paths through implementation are tested

let max3 x y z =
if x>y then

if x>z then x else z
else

if y>z then y else z

Testing according to black-box specification might lead to all kinds of
inputs

But there are really only four paths through implementation!
Representatives: (i) 3 2 1, (ii) 3, 2, 4, (iii) 1, 2, 1, (iv) 1, 2, 3

Achieving path coverage

• Include test cases for:
– each branch of each (nested) if expression
– each branch of each (nested) pattern match

• Particularly watch out for:
– base cases of recursive function
– recursive calls in recursive function
– every place where an exception might be raised

Testing data abstractions
• Some functions of a data abstraction produce a value

of it
– empty produces an empty set
– union produces a set

• Other functions consume a value
– size consumes a dictionary and produces an integer
– bindings consumes a dictionary and produces a list

• For every possible path through spec and impl of
producers... test how a consumer handles it
– e.g. if producers of a set handle sets of size 0, 1, and >1

differently...
– then test each such set with every consumer

• For every value returned by abstraction, check the RI

Bisect

• Tool for glass-box testing in OCaml
• Tutorial in textbook
• You will use it on A4

Upcoming events
• [Yesterday] A3 out
• [Today] Foster Office Hours 1:15-2:15pm
• [Tonight] Level Up tonight in Gates 114!

This is saving your code from being rekt.

THIS IS 3110

