
Abstraction Functions and
Representation Invariants

Today’s music: Never Change by JAY-Z

Nate Foster
Spring 2019

Review

Previously in 3110:
• Specifying functions

Today:
• Specifying data abstractions

Back to: Audience of specification
• Clients
– Spec informs what they must guarantee

(preconditions)
– Spec informs what they can assume (postconditions)

• Implementers
– Spec informs what they can assume (preconditions)
– Spec informs what they must guarantee

(postconditions)

But the spec isn’t enough for implementers...

REPRESENTATION TYPES

Dem
o

Representation types

• Q: How to interpret the representation type
as the data abstraction?

• A: Abstraction function

• Q: How to determine which values of
representation type are meaningful?

• A: Representation invariant

ABSTRACTION FUNCTIONS

Abstraction function

{1,2} {7} abstract value: setclient’s view

[1;2] [7][2;1] concrete value: list (no dups)implementer’s view

abstraction barrier

the black arrows are the abstraction function

Abstraction function
maps

valid concrete values
to

abstract values

Documenting the AF

• Above rep type in implementation you write:
(* AF: comment *)

• Write it first before implementing operations

Dem
o

Representation types

• Q: How to interpret the representation type
as the data abstraction?

• A: Abstraction function

• Q: How to determine which values of
representation type are meaningful?

• A: Representation invariant

REPRESENTATION INVARIANTS

Abstraction function

{1,2} {7} abstract value: setclient’s view

[1;2] [7][2;1] concrete value: list (no dups)implementer’s view

abstraction barrier

Representation invariant

{1,2} {7} abstract value: setclient’s view

[1;2] [7][2;1] valid concrete values:
satisfy rep. invariant

implementer’s view

abstraction barrier

[1;2;1] [3;3]
invalid concrete values:
do not satisfy rep. invariant

the thick red line is the rep. invariant

Rep. invariant
distinguishes

valid concrete values
from

invalid concrete values

Documenting the RI

• Above rep type in implementation you write:
(* RI: comment *)

• Write it first before implementing operations

Dem
o

Rep. invariant
implicitly part of

every precondition and
every postcondition

in abstraction
Dem
o

Invariant may temporarily be violated

concrete
output

concrete
operation

concrete
input

RI holds RI holds

RI maybe violated Dem
o

Discussion

When and how would you implement a RI as
part of a data abstraction?

Implementing the RI

Idiom: if RI fails then raise exception,
otherwise return concrete value

Dem
o

Recap

• Q: How to interpret the representation type
as the data abstraction?

• A: Abstraction function

• Q: How to determine which values of
representation type are meaningful?

• A: Representation invariant

Upcoming events

• [Today] Foster Office Hours 1:15-2:15pm

This is invariant.

THIS IS 3110

