
☑

What does this code do?
let rec sort n l =

match n, l with
| 2, x1 :: x2 :: _ ->

if cmp x1 x2 <= 0 then [x1; x2] else [x2; x1]
| 3, x1 :: x2 :: x3 :: _ ->

if cmp x1 x2 <= 0 then begin
if cmp x2 x3 <= 0 then [x1; x2; x3]
else if cmp x1 x3 <= 0 then [x1; x3; x2]
else [x3; x1; x2]

end else begin
if cmp x1 x3 <= 0 then [x2; x1; x3]
else if cmp x2 x3 <= 0 then [x2; x3; x1]
else [x3; x2; x1]

end
| n, l ->

let n1 = n asr 1 in
let n2 = n - n1 in
let l2 = chop n1 l in
let s1 = rev_sort n1 l in
let s2 = rev_sort n2 l2 in
rev_merge_rev s1 s2 []

...

Specifica(on
(noun)
Intended behavior of a piece of code

(verb)
The act of creating such an artifact

Example specifica-on
val sort : int list -> int list
• Returns a list with elements in ascending order
• ! Can return a list with every element set to 0!
• Returns a list with elements in ascending order,

that is also a permutation of the input
• ! Can return a list whose length is different than

the input list!
• Returns a list with elements in ascending order,

that is a permutation of the input and has a same
length as the input

• "

Specifications
are contracts

Benefits

• Locality: understand abstrac,on without
needing to read implementa,on

• Modifiability: change implementa,on
without breaking client code

• Accountability: clarify who is to blame

Audience of specifica/on

• Clients
– What they must guarantee (preconditions)
– What they can assume (postconditions)

• Implementers
– What they can assume (preconditions)
– What they must guarantee (postconditions)

Sa#sfac#on

An implementation satisfies a specification if it
provides the described behavior

An implementation may satisfy several specifications
• Client has to assume it could be any of them
• Implementer gets to pick one

SPECIFYING FUNCTIONS

A template for spec. comments
(** [f x] is ...

Example: ...
Requires: ...
Raises: ... *)

val f : t1 ... -> u

Based on Abstrac(on and Specifica(on in Program Development
(Now Program Development in Java: Abstrac(on, Specifica(on, and Object-
Oriented Design)
By Barbara Liskov and John Gu7ag

Requires clause

(** [hd lst] is the head of [lst].
Requires: [lst] is non-empty. *)

val hd : 'a list -> 'a

Precondi0on: blame client if input is bad

Requires clause

(** [hd lst] is the head of [lst].
Requires: [lst] is non-empty. *)

val hd : 'a list -> 'a

Precondi0on: blame client if input is bad
Types are part of
the source code

not the comment.

Returns clause
(** [sort lst] contains the same

elements as [lst], but sorted
in ascending order. *)

val sort : int list -> int list

Postcondition: blame implementer if output is bad
(unless client violated a precondition)

Example clause
(** Examples:

- [sort [1;3;2;3]] is [[1;2;3;3]].
- [sort []] is [[]]. *)

val sort : int list -> int list

Super helpful to clarify spec for humans.

Raises clause
(** [hd lst] is the head of [lst].

Requires: [lst] is non-empty.
Raises: [Failure "hd"] if [lst]
is empty. *)

val hd : 'a list -> 'a

Also a postcondition: behavior implementer must provide

Total func+on:
Well-defined behavior for all inputs.
No requires/raises clause needed.

Par+al func+on:
Some inputs lead to unspecified
behavior.
Requires/raises clause needed.

WORKING WITH SPECS

TL;DR: It's hard

Wri$ng good specs is hard:
• the language and compiler do not demand it
• if you're coding only for yourself, neither do you

Reading specs is also hard:
• requires close a;en$on to detail

When to write specifications
• During design:
– as soon as a design decision is made, document it in a

specifica1on
– posing and answering ques1ons about behavior

clarifies what to implement

• During implementa7on:
– update specifica1on during code revisions
– a specifica1on becomes obsolete only when the

abstrac1on becomes obsolete

Upcoming events
• [Tomorrow] A2 due
• [Tomorrow] A3 not going out due to Winter Break
• Essay on The Pragma-c Programmer posted on CMS
• Any issues with assignments → discuss with secAon TAs first

This is hard.

THIS IS 3110

