
Functors

Today’s music: "Uptown Funk"
by Mark Ronson feat. Bruno Mars

Nate Foster
Spring 2019

Please try
to sit with
your team

&
have your

iClicker out
and ready.

Review

Previously in 3110:
• modules, structures, signatures, abstract types
• aspects of modularity: namespaces,

abstraction

Today:
• code reuse: functors and includes

Review
Encapsulation: hide parts of module from clients

module type Stack = sig
type 'a t
val push : 'a -> 'a t -> 'a t

end

module ListStack : Stack = struct
type 'a t = 'a list
let push x s = x::s

end

type constructor t is abstract:
clients of this signature know
the type exists but not what it

is

Review
Encapsulation: hide parts of module from clients

module type Stack = sig
type 'a t
val push : 'a -> 'a t -> 'a t

end

module ListStack : Stack = struct
type 'a t = 'a list
let push x s = x::s

end module is sealed: all definitions
in it except those given in

signature Stack are hidden
from clients

FUNCTORS
(funk you up?)

Cornell (CS) funk you up:
https://www.youtube.com/watch?v=Au56Ah92Ulk

https://www.youtube.com/watch?v=Au56Ah92Ulk

Functors
are

"functions"
on

structures Demo

Matching

A structure Struct matches a signature Sig if:

1.Struct defines every declaration in Sig

2. The type of each definition in Struct is the
same as or more general than the declaration
in Sig

PARAMETERIZED MODULE:
TEST SUITE

Re-using code

Demo

PARAMETERIZED MODULE:
MAP

Re-using code

Demohttps://www.cs.cornell.edu/courses/cs3110/2018fa/manual-4.6/libref/Map.html

https://www.cs.cornell.edu/courses/cs3110/2018fa/manual-4.6/libref/Map.html

INCLUDES

Demo

Code reuse from includes

• Interface inheritance
• Implementation inheritance

Upcoming events

• [Today] Foster OH in Gates 432
• [Tonight] Level up!

This is higher-order funk.

THIS IS 3110

