
Modular Programming

Today’s music: "Giorgio By Moroder" by Daft Punk

Nate Foster
Spring 2019

Moog modular synthesizer

Based in Trumansburg, NY, 1953-1971
Game changing! picked up by the Beatles, the Rolling
Stones…

Review

Previously in 3110:
• how to build small programs

Today:
• language features for building large programs:

structures, signatures, modules

Scale
• Staff solution to A1: 100 LoC
• OCaml: 200,000 LoC
• Unreal engine 3: 2,000,000 LoC
• Windows Vista: 50,000,000 LoC
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

...can’t be done by one person

...no individual programmer can understand all the details

...too complex to build with OCaml we’ve seen so far

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Modularity

Modular programming: code comprises
independent modules
– developed separately
– understand behavior of module in isolation
– reason locally, not globally

Java features for modularity

• classes, packages: organize identifiers (classes,
methods, fields, etc.) into namespaces

• interfaces: describe related classes
• public, protected, private: control what is

visible outside a namespace
• subtyping, inheritance: enables code reuse

OCaml features for modularity

• structures: organize identifiers (functions,
values, etc.) into namespaces

• signatures: describe related modules
• abstract types: control what is visible outside

a namespace
• functors, includes: enable code reuse

...the OCaml module system

STRUCTURES

Demo

Structures

• Collections of definitions
• Evaluated in order
• Structure value can be bound to module name
• Structure values are second class

SIGNATURES

Demo

Signatures

• Collections of declarations (and some
definitions)

• Not evaluated; just type checked
• Signature type can be bound to module type

name

Type checking
If you give a module a type...

module Mod : Sig = struct ... end

Then type checker ensures...
1. Signature matching: everything declared in

Sig must be defined in Mod
(OK to add new definitions to Mod that aren't
declared in Sig)

2. Encapsulation: nothing other than what’s
declared in Sig can be accessed from outside
Mod

Demo

ABSTRACT TYPES

Demo

Exposure is bad

• Client code shouldn't need to know what the
representation type is

• Rule of thumb: clients will exploit knowledge
of representation if you let them

• Client code shouldn't get to know what the
representation type is

COMPILATION UNITS

Demo

OCaml features for modularity

• structures: organize identifiers (functions,
values, etc.) into namespaces

• signatures: describe related modules
• abstract types: control what is visible outside

a namespace
• functors, includes: enable code reuse

Upcoming events
• [Now] Team #1 boot-up!
• Complete survey announced on Discourse
• Short written assignment due Sunday

• [Wed] A1 due
• [Wed] A2 out

This is game changing.

THIS IS 3110

