110
CS3

Higher-order Programming

Nate Foster
Spring 2019

Today’s music: Higher Ground Stevie Wonder

Coding Standards Rubric

 Meets Expectations (O points) is the norm

* Needs Improvement (-1 points) means you
have room to improve and your TAs would be
happy to help

* Exceeds Expectations (1 points) is rare and
means you truly went beyond the call of duty

Review

Previously in 3110:
* Lots of language features

Today:
* No new language features
* New idioms and library functions:

Review: Functions are values

* Can use them anywhere we use values
* Functions can take functions as arguments

* Functions can return functions as results

...s0 functions are higher-order

HIGHER-ORDER FUNCTIONS

Demo

TWO MONUMENTAL
HIGHER-ORDER FUNCTIONS

ANNALS OF TECHNOLOCGY DECEMBER 10, 2018 ISSUE

THE FRIENDSHIP THAT MADE
GOOGLE HUGE

Coding together at the same computer, Jeff Dean and Sanjay Ghemawat
changed the course of the company—and the Internet.

By Jumes Somers f v

0010000000000 010000
T 1) 1111

100000)1 1)1
0010000)0 01 {1
0010001008 100000 (N |
mmm& 0 a0t
mnmmmﬂnmomn@nnmmmmm]
00100010000 100000000K £0001000 000

00001000D02000] 100;01]000100010%%1

PR e g e ///%////////// Yooyl
Y il T die

AT NEYT AT AT AT T T

MapReduce

“[Google’s MapReduce]
abstraction is inspired by the
map and reduce primitives
present in Lisp and many

other
[Dean and Ghemawat, 2008]

Map

map (fun x -> shirt color(x))

[

Map

map (fun x -> shirt color(x))

[

Map

map

bad style!

(fun x -> shirt color(x))

Map

map shirt color |

TRANSFORMING ELEMENTS

Demo

Map

let rec map £ = function

| [1 -> []

| ' x :: xs => (f x) :: (map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

Abstraction Principle

Factor out recurring code patterns.
Don't duplicate them.

COMBINING ELEMENTS

Demo

Combining elements

let rec combine init op = function
[] -> init

h :: t ->

op h (combine init op t)

List.fold right

List.fold right f [a;b;c] init
computes
f a (fb (f ¢ init))

Accumulates an answer by

* repeatedly applying £ to an element of list
and “answer so far”

e folding in list elements “from the right”

List.fold left

List.fold left f init [a;b;c]
computes
f (£ (£ init a) b) c

Accumulates an answer by

* repeatedly applying £ to "answer so far"
and an element of list

e folding in list elements “from the left”

Behold the power of fold

let rev xs =
fold left (fun xs x -> x :: Xs) [] XS

let length xs =
fold left (fun a ->a + 1) 0 xs

let map f xs =
fold right (fun x a -> (f x) :: a) xs []

Upcoming events

e [Today] Foster OH Gates 432 1:15-2:15pm
* [Today] Level Up! Gates 310 7-8pm

This is monumental.

THIS IS 3110

