
Higher-order Programming

Today’s music: Higher Ground Stevie Wonder

Nate Foster
Spring 2019

Coding Standards Rubric

• Meets Expectations (0 points) is the norm

• Needs Improvement (-1 points) means you
have room to improve and your TAs would be
happy to help

• Exceeds Expectations (1 points) is rare and
means you truly went beyond the call of duty

Review

Previously in 3110:
• Lots of language features

Today:
• No new language features
• New idioms and library functions:

Map, fold, and other higher-order functions

Review: Functions are values

• Can use them anywhere we use values
• Functions can take functions as arguments
• Functions can return functions as results

…so functions are higher-order

HIGHER-ORDER FUNCTIONS

Demo

TWO MONUMENTAL
HIGHER-ORDER FUNCTIONS

map
fold

Sibling: reduce

MapReduce

“[Google’s MapReduce]
abstraction is inspired by the
map and reduce primitives
present in Lisp and many
other functional languages."

[Dean and Ghemawat, 2008]

map
fold

transform list elements

Map

map (fun x -> shirt_color(x)) []

Map

map (fun x -> shirt_color(x)) []

= [gold; blue; red]

bad style!

Map

map (fun x -> shirt_color(x)) []

= [gold; blue; red]

Map

map shirt_color []

= [gold; blue; red]

TRANSFORMING ELEMENTS

Demo

Map
let rec map f = function

| [] -> []
| x :: xs -> (f x) :: (map f xs)

map : ('a -> 'b) -> 'a list -> 'b list

Factor out recurring code patterns.
Don't duplicate them.

Abstraction Principle

map
fold

combine list elements

COMBINING ELEMENTS

Demo

Combining elements
let rec combine init op = function
| [] -> init
| h :: t ->
op h (combine init op t)

combining elements, using init and op, is the
essential idea behind library functions known as
fold

List.fold_right
List.fold_right f [a;b;c] init
computes
f a (f b (f c init))

Accumulates an answer by
• repeatedly applying f to an element of list

and “answer so far”
• folding in list elements “from the right”

List.fold_left
List.fold_left f init [a;b;c]
computes
f (f (f init a) b) c

Accumulates an answer by
• repeatedly applying f to "answer so far"

and an element of list
• folding in list elements “from the left”

Behold the power of fold
let rev xs =

fold_left (fun xs x -> x :: xs) [] xs

let length xs =
fold_left (fun a _ -> a + 1) 0 xs

let map f xs =
fold_right (fun x a -> (f x) :: a) xs []

Upcoming events

• [Today] Foster OH Gates 432 1:15-2:15pm
• [Today] Level Up! Gates 310 7-8pm

This is monumental.

THIS IS 3110

