Functions

Nate Foster
Spring 2019

Far Above Cayuga’s Waters (Dixieland Ramblers)
Review

Previously in 3110:
• Syntax and semantics
• Expressions: if, let
• Definitions: let

Today:
• Functions
ANONYMOUS FUNCTION EXPRESSIONS
& FUNCTION APPLICATION EXPRESSIONS
Anonymous function expression

Syntax: `fun x1 ... xn -> e`

`fun` is a keyword :)

Evaluation:

• A function is a value: no further computation to do
• In particular, body `e` is not evaluated until function is applied
Lambda

• Anonymous functions a.k.a. *lambda expressions*

• Math notation: $\lambda x \cdot e$

• The lambda means “what follows is an anonymous function”
Lambda

- Python
- Java 8
- A popular PL blog
- Lambda style
Functions are values

Can use them anywhere we use values:

• Functions can take functions as arguments
• Functions can return functions as results

This is an incredibly powerful language feature!
Function application

Syntax: \(e_0 \ e_1 \ \ldots \ e_n \)

No parentheses required!
(unless you need to force particular order of evaluation)
Function application

Evaluation of \(e_0 \ e_1 \ldots \ e_n \):

1. Evaluate \(e_0\ldots e_n \) to values \(v_0\ldots v_n \)
2. Type checking will ensure that \(v_0 \) is a function \(\text{fun } x_1 \ldots x_n \rightarrow e \)
3. Substitute \(v_i \) for \(x_i \) in \(e \) yielding new expression \(e' \)
4. Evaluate \(e' \) to a value \(v \), which is result
Let vs. function

These two expressions are syntactically different but semantically equivalent:

let x = 2 in x+1

(fun x -> x+1) 2
FUNCTION DEFINITIONS
Two ways to define functions

These definitions are **syntactically different** but **semantically equivalent**:

```
let inc = fun x -> x+1

let inc x = x + 1
```

Fundamentally no difference from `let` definitions we saw before.
Recursive function definition

Must explicitly state that function is recursive:

\texttt{let rec f ...}
Reverse application

• Instead of $f \ e$ can write $e \ |> \ f$

• Use: pipeline a value through several functions
 $5 \ |> \ inc \ |> \ square \ (** \Rightarrow 36**)$

assuming

let inc $x = x + 1$

let square $x = x * x$
FUNCTIONS AND TYPES
Function types

Type \(t \rightarrow u \) is the type of a function that takes input of type \(t \) and returns output of type \(u \).

Type \(t_1 \rightarrow t_2 \rightarrow u \) is the type of a function that takes input of type \(t_1 \) and another input of type \(t_2 \) and returns output of type \(u \).

etc.

Note dual purpose for \(\rightarrow \) syntax:
- Function types
- Function values
Function application

Type checking:

If \(e_0 : t_1 \rightarrow \ldots \rightarrow t_n \rightarrow u \)
And \(e_1 : t_1, \ldots, \)
\(e_n : t_n \)

Then \(e_0 \ e_1 \ \ldots \ e_n : u \)
Anonymous function expression

Type checking:

If $x_1: t_1, \ldots, x_n: t_n$
And $e: u$
Then $(\text{fun } x_1 \ldots x_n \to e) :$
\hspace{1cm} $t_1 \to \ldots \to t_n \to u$
PARTIAL APPLICATION
More syntactic sugar

Multi-argument functions do not exist

\[
\text{fun } x \ y \rightarrow e
\]

is syntactic sugar for

\[
\text{fun } x \rightarrow (\text{fun } y \rightarrow e)
\]
More syntactic sugar

Multi-argument functions do not exist

\[
\text{fun } x \ y \ z \rightarrow e
\]

is syntactic sugar for

\[
\text{fun } x \rightarrow (\text{fun } y \rightarrow (\text{fun } z \rightarrow e))
\]
More syntactic sugar

Multi-argument functions do not exist

```
let add x y = x + y
```

is syntactic sugar for

```
let add = fun x ->
  fun y ->
    x + y
```
Again: **Functions are values**

Can use them **anywhere** we use values:

- Functions can **take** functions as arguments
- Functions can **return** functions as results

This is an incredibly powerful language feature!
Upcoming events

• [Tomorrow] A0 released by end of day

This is fun!

THIS IS 3110

THIS IS 3110