
Expressions

Today’s music: Express Yourself (N.W.A.)

Nate Foster
Spring 2019

Recap
Last time:
• What is a functional language?
• Why study programming in a functional

language

Today:
• Five aspects of a language
• Expressions, values, definitions

Question

Did you bring an iClicker today?

A. Yes
B. No
C. I plead the 5th

No worries: Attendance point tracking starts in lecture on Tuesday; in section, on Monday

Five aspects of learning a PL
1. Syntax: How do you write language constructs?

2. Semantics: What do programs mean? (Type checking, evaluation rules)

3. Idioms: What are typical patterns for using language features to express
your computation?

4. Libraries: What facilities does the language (or a third-party project)
provide as “standard”? (E.g., file access, data structures)

5. Tools: What do language implementations provide to make your job
easier? (E.g., top-level, debugger, GUI editor, …)

• All are essential for good programmers to understand
• Breaking a new PL down into these pieces makes it easier to learn

Our Focus
We focus on semantics and idioms for OCaml
• Semantics is like a meta-tool: it will help you learn

languages
• Idioms will make you a better programmer in those

languages

Libraries and tools are a secondary focus: throughout your
career you’ll learn new ones on the job every year

Syntax is almost always boring
– A fact to learn, like “Cornell was founded in 1865”
– People obsess over subjective preferences {yawn}
– Class rule: We don’t complain about syntax

Phil Wadler

b. 1956

• CS Professor at Edinburgh
• One of the designers of the Haskell language
• The external examiner at my PhD defense J

“In any language design, the total
time spent discussing a feature in
this list is proportional to two raised
to the power of its position:
0. Semantics
1. Syntax
2. Lexical syntax
3. Lexical syntax of comments”

Expressions

• Primary building block of OCaml programs
• Akin to statements or commands in

imperative languages
• Examples:
– 21 + 21
– true
– 3.14159
– “Hello” ^ “ “ ^ ”World”

Expressions

Every kind of expression has:
• Syntax
• Semantics:
– Type-checking rules (static semantics): produce a

type or fail with an error message
– Evaluation rules (dynamic semantics): produce a

value
• (or exception or infinite loop)
• Used only on expressions that type-check

Values

A value is an expression that does not need any
further evaluation

ExpressionsValues

Dem
o

IF EXPRESSIONS

Dem
o

if expressions
Syntax:

if e1 then e2 else e3

Evaluation:
• if e1 evaluates to true, and if e2 evaluates to v,

then if e1 then e2 else e3 evaluates to v
• if e1 evaluates to false, and if e3 evaluates to v,

then if e1 then e2 else e3 evaluates to v

Type checking:
if e1 has type bool and e2 has type t and e3 has type t
then if e1 then e2 else e3 has type t

Write ==> to indicate evaluation
Pronounce as "evaluates to"

Write colon to indicate type of expression
Pronounce colon as "has type"

if expressions
Syntax:

if e1 then e2 else e3

Evaluation:
• if e1 ==> true and e2 ==> v,

then if e1 then e2 else e3 ==> v
• if e1 ==> false and e3 ==> v,

then if e1 then e2 else e3 ==> v

Type checking:
if e1 : bool and e2 : t and e3 : t
then if e1 then e2 else e3 : t

if expressions
Syntax:

if e1 then e2 else e3

Evaluation:
• if e1 ==> true and e2 ==> v,

then (if e1 then e2 else e3) ==> v
• if e1 ==> false and e3 ==> v,

then (if e1 then e2 else e3) ==> v

Type checking:
if e1 : bool and e2 : t and e3 : t
then (if e1 then e2 else e3) : t

Type inference and annotation

• OCaml compiler infers types
– Compilation fails with type error if it can't
– Hard part of language design: guaranteeing

compiler can infer types when program is
correctly written

• You can manually annotate types anywhere
– Replace e with (e : t)
– Useful for resolving type errors

Dem
o

LET DEFINITIONS

Dem
o

Definitions

A definition gives a name to a value
Definitions are not expressions, or vice-versa
But definitions syntactically contain expressions

DefinitionsExpressions

Values

let definitions
Syntax:

let x = e
where x is an identifier

Evaluation:
– Evaluate e to a value v
– Bind v to x: henceforth, x will evaluate to v

(under the hood: there is a memory location named
x that contains v)

– But the definition does not evaluate to a value

LET EXPRESSIONS

Dem
o

let expressions

Syntax:
let x = e1 in e2

x is an identifier
e1 is the binding expression
e2 is the body expression
let x = e1 in e2 is itself an expression

let expressions

let x = e1 in e2

Evaluation:
– Evaluate e1 to a value v1
– Substitute v1 for x in e2, yielding a new

expression e2’
– Evaluate e2’ to v2
– Result of evaluation is v2

Exampl
e

let expressions

let x = e1 in e2

Type-checking:
If e1:t1 and x:t1 and e2:t2
then (let x = e1 in e2) : t2

This type-checking rule was stated incorrectly during lecture; it has been fixed.

VARIABLE EXPRESSIONS

Variable expressions

How to evaluate just

x

?

let definitions in toplevel

let x = e
is implicitly, “in rest of what you type”

let a="big" in
let b="red" in
let c=a^b in…

Toplevel understands asE.g., you type:
let a="big";;
let b="red";;
let c=a^b;;

Variable expressions
How to evaluate just

x

?

Answer: substitution from that giant nested
let expression

Upcoming events
• [Today] Consulting hours in Rhodes 590 from

4:30-9:30pm
• [Tomorrow] Standby list closes
• [Monday/Tuesday] Discussion sections start
• [Tuesday] A0 released

This is expressive.

THIS IS 3110

WHAT ABOUT IMMUTABILITY?

Seems like variable can mutate…

let x = 1;;
let x = 2;;
x;;

But really it's just nested scopes

let x = 1 in
let x = 2 in
x

Allocate memory that will always be 1

Allocate memory that will always be 2

Which piece of memory does name mean?
Innermost scope, as you would expect.

See section on Scope in textbook for full details, including
Principle of Name Irrelevance

