
Introduction to 3110

Today’s music: Voygaer Tagoloa (Mark Mancina and Opataia Foa’i)

Nate Foster
Spring 2019

Programming is
not hard

Programming well
is very hard

10x
[Grant and Sackman, 1967]: 28x

[Prechelt 1999]: 2-4x

Folklore:

variation in professional programmer productivity

The Goal of 3110

Become a better programmer
though study of

programming languages

Programming Languages

Java is to Programming Languages
as

Japanese is to Linguistics

Programming Languages: Language design, implementation,
semantics, compilers, interpreters, runtime systems,
programming methodology, testing, verification, security,
reliability…

Adjacent to Software Engineering in the CS family tree.

Questions we'll pursue

• How do you write code both for and with
other people?

• How do you know your code is correct?
• How do you describe and implement a

programming language?

Tasks we'll pursue

Practice of programming: read / write lots of code

11 programming assignments:
about 100-400 LoC each, excluding testing and documentation

Tasks we'll pursue

Practice of programming: coding as a team

Starting with 3rd assignment: instructor-formed teams of a few students

Tasks we'll pursue

Concepts of programming: written assignments

Weekly written recitation assignments (no more than 1 page per recitation)

Tasks we'll pursue

Learning a functional language

Why? What does that even mean?

What is a functional language?

A functional language:
• defines computations as mathematical functions
• avoids mutable state

State: information maintained by a computation
Mutable: can be changed (antonym: immutable)

Mutability
The fantasy of mutability:
• It's easy to reason about: the machine does this,

then this...

The reality of mutability:
• Machines are good at complicated manipulation

of state
• Humans are not good at understanding it!

Mutability breaks referential transparency: ability to
replace expression with its value without affecting result
of computation

Imperative programming
Commands specify how to compute by destructively
changing state:

x = x+1;
a[i] = 42;
p.next = p.next.next;

Functions/methods have side effects:
int x = 0;
int incr_x() {
x++;
return x;

}

Functional programming

Expressions specify what to compute
– Variables never change value
– Functions never have side effects

The reality of immutability:
– No need to think about state
– Powerful ways to build correct programs

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative
languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative
languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Analogy: studying a foreign language

• Learn about another culture; incorporate aspects
into your own life

• Shed preconceptions and prejudices about others
• Understand your native language better

Alan J. Perlis

“A language that doesn't affect
the way you think about
programming is not worth
knowing.”

First recipient of the Turing Award
for his “influence in the area of advanced programming
techniques and compiler construction”

19

1922-1990

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative
languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Functional languages predict the future

• Garbage collection
Java [1995], LISP [1958]

• Generics
Java 5 [2004], ML [1990]

• Higher-order functions
C#3.0 [2007], Java 8 [2014], LISP [1958]

• Type inference
C++11 [2011], Java 7 [2011] and 8, ML [1990]

• What's next?

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative
languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Functional languages in the real world

• Java 8
• F#, C# 3.0, LINQ
• Scala
• Haskell
• Erlang
• OCaml

https://ocaml.org/learn/companies.html

...but Cornell CS (et al.) require functional programming for your education, not to get you a job

https://ocaml.org/learn/companies.html

Albert Einstein

"Education is what remains
after one has forgotten
everything one learned
in school."

1879-1955

Why study functional programming?

1. Functional languages teach you that
programming transcends programming in a
language (assuming you you have only programmed in imperative
languages)

2. Functional languages predict the future
3. (Functional languages are sometimes used in

industry)
4. Functional languages are elegant

Elegant

Elegant

Beautiful

Do aesthetics matter?

YES!

Who reads code?
– Machines
– Humans

• Elegant code is easier to read and maintain
• Elegant code might (not) be easier to write

OCaml

A pretty good language for writing beautiful
programs

O = Objective, Caml=not important
ML is a family of languages; originally the “meta-language” for a tool

OCaml is awesome
• Immutable programming

– Variable’s values cannot destructively be changed; makes reasoning about program easier!
• Algebraic datatypes and pattern matching

– Makes definition and manipulation of complex data structures easy to express
• First-class functions

– Functions can be passed around like ordinary values
• Static type-checking

– Reduce number of run-time errors
• Automatic type inference

– No burden to write down types of every single variable
• Parametric polymorphism

– Enables construction of abstractions that work across many data types
• Garbage collection

– Automated memory management eliminates many run-time errors
• Modules

– Advanced system for structuring large systems

But no language is perfect…

Languages are tools

Languages are tools
• There's no universally perfect tool
• There's no universally perfect language
• OCaml is good for this course because:
– good mix of functional & imperative features
– relatively easy to reason about meaning of programs

• But OCaml isn't perfect
– there will be features you miss from language X
– there will be annoyances based on your expectations
– keep an open mind, try to have fun

LOGISTICS

Course website

cs3110.org
or

https://www.cs.cornell.edu/courses/cs3110/2019sp/

Course staff
Instructor: Nate Foster
• PhD UPenn
• At Cornell since 2010
• Research: programming languages & networking
• Call me “Nate” in this course, or “Dr. Foster” if you’re

not into the whole brevity thing

TAs and consultants: > 50 at last count
• Senior TAs: Rachit Nigam, Eric Wu, Jialing Pei, Ning

Ning Sun, Malavika Attaluri, Sitar Harel, & Timothy Zhu

Registration

• Unfortunately with 450 of you, I cannot get
involved with swaps for discussion sections…
but another section is being added

• If you are not registered for the course and
still want in, follow instructions on course
website to add yourself to Standby List

• Deadline to be added to the Standby List:
Friday 5pm

Upcoming events
• [today, Wednesday] Drop by my office in the

afternoon if you need something immediately
• [Thursday] Consulting hours start; check calendar

on course website
• [Thursday] Bring iClicker
• [Friday] Register for Standby List
• [Monday] Recitations begin (none this week)

…why are you still here? Get to work! J

THIS IS 3110

