
GIST A4
BY ANDREW SIKOWITZ



OVERVIEW FOR A4

• Implement Dictionary and Set modules (well… functors)

• Use them to create a search engine (almost like Google, but for text files, not websites)

• Bisect: Glass box testing framework that checks code coverage on tests

• You will extend your project in A5, with a new Dictionary implementation

• Build your project (and test suite) with this in mind



A2 DELIVERABLES

• Zip file, created by `make zip`, which requires work in:

• [listDictionary.ml]: Implement a Dictionary with an association list

• [dictionarySet.ml]: Implement a Set with a Dictionary

• [engine.ml]: Crawl through text files and use a Dictionary and Set to map words to the files 
that contain them

• [test.ml]: Test suite for everything you implement

• [authors.ml] and [authors.mli]: Assignment metadata.

• Also, the <report/> directory, which will contain Bisect’s generated files (more on this later)



Before getting started…

• A new Makefile addition

• `make bisect`: Build, run tests, then generate the bisect report in the <report/> directory

• You can open <report/index.html> to see the code coverage overview

• Regular Expression Level Up! next Monday

• Bisect

• A code coverage tool, that will analyze what lines of code are executing when running tests

• Example shown during presentation…



Dictionary Module

• You don’t implement this, but you will need to know its contents

• Comparable: Signature with a type and function for comparing values of that type

• Formattable: Signature with a type and function for representing that type as a string

• KeySig: Signature representing the type of keys in a dictionary, comparable + formattable

• ValueSig: Signature representing the type of values in a dictionary, just formattable

• Dictionary: Signature representing a dictionary. Look here for documentation

• DictionaryMaker: A functor signature that takes in a (K:KeySig) and (V: ValueSig), producing a Dictionary



ListDictionary Module

• Implement the functor Make, which is a DictionaryMaker (as per the previous slide)

• Decide on a type [t] that is an association list with the correct types

• Decide how you want to implement the Dictionary, documenting AF and RI

• Implement RI via [rep_ok] and AF via [format]

• Based on them, implement the rest of the functions (documented in <dictionary.mli>)

• Write tests for all the exposed functions!



ListDictionary Tips

• Once again, make sure to carefully read the function specifications in <dictionary.mli>

• For example, [to_list] returns a sorted list representing the Dictionary

• Try to make your implementations tail recursive (details later)

• Make sure you compare keys via the input KeySig module’s [compare] function, not the 
built in comparison operations (e.g. Pervasives.compare, =, <, <=, etc.)

• Hint: List.assoc, List.assoc_opt, List.mem_assoc, List.remove_assoc all use Pervasives.compare



Implementing [rep_ok]

• [rep_ok x] returns [x] if the representation invariant is satisfied, and raises a Failure 
exception if it is not

• You can use [rep_ok] in debugging to make sure you never break the RI

• e.g. check [rep_ok] is satisfied at function start and end for functions taking in a Dictionary

• However, before submitting or running load tests, consider removing [rep_ok] usages

• You can also replace [rep_ok]’s implementation with the identity function to keep the calls

• But make sure to keep your original implementation commented out, for graders to read

• It may have non-constant running time and slow down your program



Implementing [format]

• Meant to be used with [Format.fprintf]

• [Format.fprintf fmt str arg1 … argN]:
• [fmt]: a “formatter”, basically specifies where to output

• [Format.std_formatter] is a formatter that outputs to stdout

• [Format.str_formatter] is a formatter that outputs to a string buffer

• [str]: a formatted string, specifying what to output
• Like C’s printf, you can embed values with “%c” for some character c

• “%d” for integers, “%s” for strings, “%B” for bools, etc.

• See https://caml.inria.fr/pub/docs/manual-ocaml/libref/Printf.html for a list of all of them

• [arg1 … argN]: embedded values, number and types of which based on the % flags in [str]



[Format.fprintf] continued

• Example (with [fmt] given as argument):
• Format.fprintf fmt "(%d, %d, %s)" 5 7 "abc" (* prints "(5, 7, abc)" *)

• What about embedding more complex types?
• Use “%a” and pass as arguments a custom-defined formatting function and the value

• If the value has type [t], format function should have type [formatter -> t -> unit]

let rec print_list fmt lst =

match lst with

| [] -> Format.fprintf fmt ""

| h::[] -> Format.fprintf fmt "%d" h

| h::t -> Format.fprintf fmt "%d, %a" h print_list t in

Format.fprintf Format.std_formatter "[%a]" print_list [1; 2; 3] (* prints [1, 2, 3] to stdout *)



DictionarySet Module

• Implement the functor Make

• Takes (E:ElementSig), specifying the type of element in the set (ElementSig is just like KeySig)

• Takes (DM:DictionaryMaker), which you will use to make a Dictionary module

• Produces a Set (documentation in <dictionarySet.mli>)

• Most functions can be implemented in very few lines, using Dictionary functions

• Make sure to write your AF and RI, and implement [rep_ok] and [format] as before

• Write tests for all the exposed functions!



Engine Module

• Implement the functor Make:

• Takes (S:Set) with type Elt.t = string – a set with string elements

• Takes (D:Dictionary with type Key.t = string and type Value.t = S.t) – a dictionary mapping 
strings to sets with string elements

• Produces an Engine (documentation in <engine.mli>)

• The most in-depth part of this assignment

• Requires you to use new libraries: Unix, Pervasives’ I/O, possibly Str



Engine Module Breakdown

• The bulk of the work is in [index_of_dir]

• Crawl through the filenames in a directory using Unix.(opendir, readdir, closedir)

• Crawl through the text in a file using Pervasives.(open_in, input_char / input_line, close_in)

• Pick out the “words” (specifically defined) in the text of each file

• Return a mapping of words to the set of files that had an occurrence of them

• [words], [to_list], and [format]: Use your Dictionary functions

• [or_not] and [and_not]: Use your Set functions



[index_of_dir] tips

• Note that crawling through a directory and through a file are very similar:

• open, read next, and close functions

• [readdir] and [input_char] / [input_line] raise [End_of_file] when iteration is over

• Be careful about filenames vs. file paths

• [readdir] returns a file name, but [open_in] expects a path

• Which format should your [idx] store?

• Indexing directories with large text files can be slow, but must not cause stack overflow

• Use tail recursion. This applies to ListDictionary and Set functions used while indexing too!



[index_of_dir] tips continued

• Looking at <engine.mli>:

• Convert all words to lowercase via [String.lowercase_ascii] before putting them in your index

• Do not change the case of filenames

• Parsing words:

• Make sure to read the definition of a “word” very carefully

• Practice OCaml regular expressions via the Str module beforehand, or don’t use regex at all!



OCaml Regular Expressions

• Define a regular expression with [regexp pattern], where pattern : string

• Look for a match with [string_match] or [search_forward] (or other functions)

• Once a match is found, get the actual string matched with [matched_string]

• Also: [split], split on a pattern to produce a list of strings
• This one is great! Simple and easy to use

• The others ones… less so

• Make sure to test your regular expressions before moving on!
• You can make your word-finding function top-level and expose it in <engine.mli> if you want



OCaml Regular Expressions Tips (and Warnings)

• When making a group, you must escape the parentheses: "\\(<pattern here>\\)"

• To use *, +, or ? on a group of characters, you must put them in a group (as above)

• [string_match r s i] will return false if the pattern doesn’t start at index [i]
• You shouldn’t try [string_match] on every possible [i]

• If you find yourself wanting to do that, use [search_forward] instead

• [search_forward r s i] will find matches for all indices >= [i]
• But it will raise [Not_found] if a match is not found, so you have to catch that

• [matched_string s] Call it on the same string you called [string_match] or [search_forward]
• You can only call this after calling one of them

• [matched_group i s]: Like [matched_string], but will pick out a specific group within your regular expression



FINAL TIPS

• Look at .mli files (again). Every function is very well-documented

• Try to implement all the functionality, including the excellent scope

• You will have to do it for A5, anyway

• Implement and test piece by piece

• This project can be broken into small, testable portions pretty well


