
GIST A2
BY ANDREW SIKOWITZ

OVERVIEW FOR A2

• Create a text adventure game engine!
• Read specifically formatted JSON files that specify a static adventure (right now, just a map)

• Allow players to jump into an adventure, like a person in a room in the map
• Dynamic game state (potentially) changes with each command

• Players interact via a REPL, inputting text commands (right now, just `go` and `quit`)

• You are now in teams!
• This team will last for at least 4 assignments. It can last the whole semester if you want.

• Set up communication channel and private git repo

• You will extend your project in A3. Build your program with this in mind!

A2 DELIVERABLES

• Team Expectations Agreement

• Coping with Hitchhikers Response

• Zip file, created by `make zip`, which requires work in:
• [adventure.ml]: A representation of an adventure, which is static and specified by a JSON file.

• [command.ml]: Module for parsing player commands.

• [state.ml]: A representation of a game state, which is dynamic, changing as the user plays the game.

• [main.ml]: Entry point for executing the game.

• [test.ml]: Test suite for Adventure, Command, and State tests.

• [authors.ml] and [authors.mli]: Assignment metadata.

TEAM ROLES

• Things you should make sure to do for this assignment:
• Work as a team – 3-4 people are expected to accomplish more than a single person

• Implement the assignment as specified – this should be obvious

• Upload a correctly formatted submission – don’t lose easy points for dumb mistakes

• Accordingly, the Policies for Teamwork page specifies the following roles:
• Coordinator

• Monitor

• Checker

• https://www.cs.cornell.edu/courses/cs3110/2018fa/teams/policies.html for details

Before getting started…

• More Makefile additions!
• `make play`: Play the game by executing [main.byte]

• `make zip`: Generate the zip file for your CMS submission

• `make docs-public`: Generate doc files for .mli files, in directory [doc.public]

• `make docs-private`: Generate doc files for .ml and .mli files, in directory [doc.private]

• `make docs`: Run the two above

• [.ocamlinit] hidden file
• Specifies commands to run before you enter utop

• A2 provided file #require-s external packages and #load-s your compiled bytecode

SET-LIKE LISTS

• The specification for several functions mentions set-like lists

• Set-like lists are values of type ‘a list, but with set properties

• There can be no duplicates in a set-like list

• Set-like lists with the same set of elements are equivalent – order does not matter

• Whenever a function states that it returns a set-like list, make sure you return one

• Look at the documentation in [adventure.mli] and [state.mli]

• Think about the best way to ensure a list is a set-like list

RAISING EXCEPTIONS

• Some functions are specified to raise specific exceptions in specific circumstances

• You must do this: consider it as one of the function’s postconditions

• These are specified in the documentation for functions in the .mli files

• Check your .mli files! They are your best friends

• Raise an exception as so:

• If the exception takes no argument: raise ExceptionName

• If the exception takes an argument: raise (ExceptionName arg)

• Those parentheses are necessary!

CATCHING EXCEPTIONS

• try … with
try e0 with

| Exception1 -> e1 (* assumes Exception1 takes no argument *)

| Exception2 arg -> e2 (* assumes Exception2 takes an argument *)

• Evaluates to e0 if no exception is raised, e1 if Exception1 is raised, and so on

• e0, e1, e2 must be the same type!

let x = (try e0 with _ -> e1) (* get value from try block *)

CATCHING EXCEPTIONS

• match … with
match e0 with

| p1 -> e1

| p2 -> e2

| exception Exception1 -> e3

| exception Exception2 arg -> e4

• Evaluates as matching normally does, unless an exception is thrown when evaluating e0

• If the exception matches one of the exception ExceptionName -> e cases, evaluates to e

ADVENTURE MODULE

• Come up with a type [t] to represent an adventure
• You should know how you plan to implement [from_json], which converts JSON to your type [t]

• Given a value of type [t], you should be able to implement the other functions in [adventure.mli]

• Implement [from_json], which involves parsing a [Yojson.Basic.json] value
• Go through the JSON tutorial

• Yojson.Basic.Util: member, to_string, to_list, to_assoc

• List: map, assoc, mem_assoc, sort_uniq

• Implement the functions that take an adventure of type [t]
• Make sure to raise the correct exceptions in the specified scenarios!

[schema.json]

• This is not an adventure file!

• Instead, it is a specially formatted JSON file that specifies how other JSON files should look

• These other JSON files are the adventure files (like [lonely_room.json] and [ho_plaza.json])

• The type of each JSON value is specified by the “type” field. Additionally…

• Each “object” has:

• its (key : value) pairs specified by the “properties” field

• its required keys specified by the “required” field

• Each “array” has its values specified by the “items” field

COMMAND MODULE

• Parse player commands of the form <verb> <object>

• <object> can have multiple words separated by spaces

• Multiple spaces should be treated as a single space

• See [command.mli] for details

• Things to keep in mind:

• String.split_on_char

• Deep pattern matching – try to avoid nested matching!

• Really this time, check the exact circumstances in which you are to raise exceptions

STATE MODULE

• Come up with a type [t] to represent game state

• Given a value of type [t], you should be able to implement [current_room_id] and [visited]

• Does not need all the information in [Adventure.t] – [go] takes an [Adventure.t] as argument

• Implement [go] which facilitates progression of the game state

• Make sure to test

MAIN MODULE

• Implement a REPL (Read Eval Print Loop) that allows a user to play the game
• Players must first enter the adventure file they would like to play

• Players then enter the specified commands to play the game

• Pay close attention to the writeup on what you are supposed to print

• [read_line] to get a line of input from the user

• [String.concat] may also come in handy…

• All I/O (e.g. reading input, printing) should be in this module, not [State]

• Note that [main.mli] is empty
• All that matters is executing [main.byte] runs the game, done by: let () = main ()

ACCESSING MODULES

• open M

• Should be at the top of the file / module; puts M in scope for that file / module

• let open M in ...

• M in scope for everything under “in”

• M.(...)

• M in scope inside parentheses

• M.something

• You’ve seen this before; no scoping

Explaining [.ocamlinit]

• #use “<filename.ml>”;;
• As if you copied all the code in the filename into the utop REPL, typed ;; and then hit enter

• Will not work if the code relies on a module that has not been loaded into utop

• #load “<filename.cmo>”;;
• Load compiled bytecode from a file

• #load_rec “<filename.cmo>”;; for recursive dependencies

• #directory “<path>”;;
• Add the directory <path> to the list of directories in which to search for files

• #require “<package_name>”;;
• Load an external package (e.g. oUnit, yojson) that you likely installed with opam (run `opam list`)

FINAL TIPS

• Look at .mli files! Every function is very well-documented

• Try to implement all the functionality, including the excellent scope
• You will have to do it for A3, anyway

• Think about what sort of extensions you would like to add, now!
• These changes will likely affect all parts of the assignment

• Adventure: type [Adventure.t], JSON parsing, and new exposed (in .mli) functions

• Command: More commands

• State: type [State.t], conversion from [Adventure.t] to [State.t], and new ways to change game state

• Main: More information to print

• Don’t implement anything that would violate the A2 spec or cause `make check` to fail though!

