
GIST A1
BY ANDREW SIKOWITZ

OVERVIEW FOR A1

• Try not to be intimidated by the writeup length

• Deliverables:
• [enigma.ml] – the functions you must implement are all documented in this file

• [enigma_test.ml] – the groups of tests you must write are listed in this file

• Also: test-driven development, pair programming, and git

• This is all you have to do!
• The majority of the writeup is help on these deliverables, not extra work

• One step of the writeup at a time, in order

TEST-DRIVEN DEVELOPMENT (TDD)

• Write tests based on a function’s specification, then implement it

• Better understand what you are supposed to implement

• Your implementation is based on the tests, not the other way around

• Try it out with other functions in this assignment, as you have to write tests for them

• Hint: There’s several test cases for different functions throughout the writeup

Before getting started…

• The Makefile is a bit different this time:

• `make build`: Generate compiled bytecode for [enigma.ml] (in the _build directory)

• `make test`: Generate compiled bytecode for [enigma_test.ml], then run the tests

• Make sure you create a private GitHub repo!

• Use the Cornell GitHub, as your partner may not have unlimited private repos

• Make sure to run both `git config` commands – they will make your life easier

• This session will not go over pair programming or how to use git

ENIGMA MACHINE OVERVIEW OVERVIEW

• You press a letter; a (potentially)
different letter lights up

• Pressing a letter triggers an electric
current through wiring

• Wiring depends on Enigma machine
state: plugboard, rotors, and reflector

• Wiring also depends on rotor “top
letter” (offset), which can change after
a letter is pressed

SUBSTITUTION CIPHER

• Several components of the Enigma machine implement a “substitution cipher”

• Essentially a one-to-one mapping between letters

• We encode the mapping as a 26-character string

• Represent letters based on their alphabetical indices – letter 0 = a, letter 1 = b, and so on

• For each index i (0 ≤ i ≤ 25) of the string, letter i maps to the character at index i in the string

• Ex: "BCDEFGHIJKLMNOPQRSTUVWXYZA" maps each letter to the letter after it

• A -> B, B -> C, J -> K, Z -> A

SUBSTITUTION CIPHER IMPLEMENTED

• Suppose we want to write a function that implements a substitution cipher:
• This is purely hypothetical – you do not need to do this!

• Maps one-to-one each letter to a different letter

• Maps one-to-one each number between 0 and 25 (inclusive) to a different number in that range

• To mimic the assigned functions, let our function take arguments:
• [wiring]: The 26-character string denoting the substitution cipher mapping

• [input_pos]: The integer representation of the input letter

• Output: The integer representation of the output letter

• Ex: [calc_subst_cipher "BCDEFGHIJKLMNOPQRSTUVWXYZA" 5] = 6
• The letter at position 5 (zero indexed) is 'G', which has index 6 in the alphabet (zero indexed)

[map_r_to_l] and [map_l_to_r]

• Likely the most complicated functions to understand

• Implement how current passes through rotors, for each direction
• Rotors are like the reflector, except they can be rotated

• When they are rotated, current that would normally enter at a certain position is offset, and current that would
normally exit at a certain position is offset in the opposite direction

• Arguments:

• [wiring]: The substitution cipher

• [input_pos]: The integer representation of the input letter

• [top_letter]: The letter at the “top” of the rotor, specifying the offset

• Output: The integer representation of the output letter

[map_r_to_l] and [map_l_to_r]: top_letter

• If top letter is ‘A’:
• There is no offset – the rotor behaves just like the reflector

• If top letter is ‘B’:
• Current that would normally enter at position 0 now enters at position 1

• Current that would normally enter at position 2 now enters at position 3

• Current that would normally enter at position 25 now enters at position 0

• Current that would normally exit at position 25 now exits at position 24

• Current that would normally exit at position 2 now exits at position 1

• Current that would normally exit at position 0 now exits at position 25

[map_r_to_l] and [map_l_to_r]: Final Tips

• Rotor overview:
• Current enters at some position

• Then, it is offset based on [top_letter]

• Then, it is rerouted based on the rotor’s wiring (as with the reflector)

• Then, it is offset back, based on [top_letter]

• Make sure to keep your numbers between 0 and 25

• Look at functions in the String module, and remember your [index] function
• https://caml.inria.fr/pub/docs/manual-ocaml/libref/String.html

• Read the writeup carefully and/or make the Pringles can model (or see it in office hours)

• Make sure to test your functions on the provided test cases.

[map_refl], [map_plug], and [cipher_char]

• [map_refl] is a simpler version of [map_r_to_l] – it has no offset

• [map_plug] takes in a list as input… what do you do with lists?

• Also remember if a letter is not part of the [plugs], you return the same letter

• [cipher_char] is putting all the pieces you’ve built together

[step]

• Likely the most complicated function to write

• Suggestion: Recursively step one rotor at a time

• Think about the order in which you want to iterate through the rotors

• Think about what information you need in deciding whether to step a single rotor

• Special cases for first and last rotors

[cipher]

• Combine [cipher_char] and [step]

• Look at the String module (again)

• [Char.escaped] or [String.make] to convert a character to a string

PIPELINING

• Use [e1 |> e2] to pass [e1] as the last input to the function [e2]
• [e1 |> e2 |> e3] is equivalent to e3 (e2 e1)

• Like passing an input through multiple consecutive functions
• Often looks cleaner and makes more sense conceptually

• Example: Get the second to last element of a list (insecurely and inefficiently)
• Do not use List.hd or List.tl in your own code!

List.hd (List.tl (List.rev lst)))
vs.

lst |> List.rev |> List.tl |> List.hd

“Take the list, reverse it, take its tail, then take the head of that”

PIPELINING (FORMATTING)

• For long chains, format as so:

e1

|> e2

|> e3

|> e4

|> e5

PIPELINING (ADVANCED)

• You can use a partially applied function as part of the pipeline

• The piped value is passed as the last argument

2 |> (-) 5 => 3

• Equivalent to (-) 5 2 = 5 - 2 = 3

• You can use infix operators such as + and - as functions by putting parentheses around them

• For multiplication, do (*), with spaces before and after *, to avoid comment syntax

RECORD SYNTAX

• For record: type person = {name: string; age: int; gpa: float}

• Define a new record: {name = "Andrew"; age = 21; gpa = 0.}

• You can use this like any expression in OCaml
• let me = {name = "Andrew"; age = 21; gpa = 0.}

• f {name = "Andrew"; age = 21; gpa = 0.} (* call function [f] with that record as input *)

• Define a new record based on an existing record (very useful):
• {old_record with field1 = value1; field2 = value2; …}
• Ex: let new_me = {me with gpa = 4.0}
• Does not change the old record (it’s immutable)!

DEEP PATTERN MATCHING

• You can often match complicated patterns in one go

let (p, q, {name; age}) = (3, 4, {name = "Andrew"; age = 21; gpa = 0.})

match ([1;2;3], 5) with

| (h1::h2::t, v) -> h1+h2+v

| _ -> 0

PATTERN MATCHING: WHEN

• Limit match cases based on a bool with the when keyword!

match [1; 2; 3] with

| h::t when h > 2 -> 0

| h::t when List.length t < 3 -> 1

| h::t -> 2

| [] -> 3

