
GIST A0
BY ANDREW SIKOWITZ

PURPOSE OF GIST

• Briefly go over the assignment

• Mention important OCaml tips, tricks, and syntax for the assignment

• Go over the hardest parts of the assignment in more detail
• Example problems

• Strategies

• This one is a bit longer than usual, due to the lack of an in-person session and the starting and final tips
sections

STARTING TIPS: THE MAKEFILE

• The release ships with a Makefile!

• This makefile defines commands that can be run in the terminal by typing `make` or
`make <cmd>`
• `make`: Start utop and execute “warmup.ml”

• `make test`: Compile and execute “warmup.ml”

• `make check`: Check your OCaml dev environment is set up correctly

• `make finalcheck`: `make check` with additional checks (see writeup)

• `make docs`: Generate documentation files in the “doc” folder

• `make clean`: Clean up build and doc files

STARTING TIPS: CODING STYLE

• You will be graded on coding style

• Grading based on four categories:
• Documentation: Are your top-level functions documented? Well?

• Testing: Have you tested your functions? Well?

• Comprehensibility: Is your code well-organized and easy to read?

• Formatting: Is your code well spaced? Are lines under 80 characters?

• Don’t use imperative features!

• See the “coding standards” page for more details
• https://www.cs.cornell.edu/courses/cs3110/2018fa/coding_standards.html

STARTING TIPS: CODING STYLE

• You should read the style guide, especially for formatting:
• multi-line functions

• single-line and many-line if expressions

• match statements

• There are different, correct ways to write the same code
• Still, stay consistent. Especially with your spacing.

• https://ocaml.org/learn/tutorials/guidelines.html

• http://www.cs.cornell.edu/courses/cs3110/2017fa/handouts/style.html
• Shorter, but less comprehensive and no longer the official style guide

OVERVIEW FOR A0

• Introductory assignment

• 3 Functions:
• Valid Date: use those boolean operators and conditionals!
• Syracuse: recursion!

• Nacci: recursion, with lists and pattern matching!

• Fill in implementations in the file “warmup.ml”

• They should get progressively harder (not necessarily more code)

IF EXPRESSIONS “RETURNING” BOOLS

• Replace them with && and ||

• if b then true else false => b

• if b then false else true => not b

• if b1 then true else if b2 then true else false => b1 || b2

• if b1 then false else if b2 then true else false => not b1 && b2

• if b1 then true else if b2 then false else true => b1 || not b2

• if b1 then true else if b2 then false else if b3 then true else false => b1 || (not b2 && b3)

:: VS @

• ::
• “cons”

• Add an element onto the head of a list

• Very fast; O(1)

• @
• “append”

• Combine two lists

• Can be slow; for l1 @ l2, O(List.length l1)

HELPER FUNCTIONS (PART 1)

• Abstract out functionality into helper functions!

let sum lst =

let rec sum_acc acc lst =

match lst with

| [] -> acc

| h::t -> sum_acc (h+acc) t in

sum_acc 0 lst

HELPER FUNCTIONS (PART 2)

• Sometimes one recursive function can’t do everything you want

• A single for or while loop can’t always accomplish what you want either

• Make a helper function!

• Ex: Write a function [map_sum] that sums each list in a list of lists

• map_sum[[1;2;3]; [4;5;6]; [7]; []; [8;9]] = [6; 15; 7; 0; 17]

HELPER FUNCTIONS (PART 2)

let rec map_sum lst =

let rec sum = function

| [] -> 0

| h::t -> h + sum t in

match lst with

| [] -> []

| h::t -> (sum h) :: (map_sum t)

FINAL TIPS: GRADING SCOPES

• Make sure to pass make check!

• We can’t grade your assignment if you don’t…

• Please read the grading scopes section
• It tells you what you have to do to get what grade

• This may not be immediately obvious

• We will put emphasis on the core of the assignments when grading
• Make sure you have a rock solid implementation for earlier scopes, before you rush onto the harder parts

FINAL TIPS: EDITOR / COMPILER ERRORS

• Small errors can cause large problems

• Check over the area of code where you’re getting errors

VS Code utop ocamlc

FINAL TIPS: TYPE ERRORS

• A lot of mistakes in OCaml result in type errors

FINAL TIPS: TYPE ERRORS

• Try to be considerate of:
• What functions you are using

• What arguments you are passing into those functions

• The types of those functions and arguments

• OCaml tries to infer the types of variables
• It assumes [sum] is an integer, as it is the result of the (+) function

• It then gets confused when [sum] is treated as a bool
• It is passed into the [not] function, which expects a bool

FINAL TIPS: TESTING

• As per the writeup, you can write tests using assertions:
• let () = assert (actual = expected)

• Ex:
• let () = assert (sum [1; 2; 3; 4; 5] = 15)

• let () = assert (sum [] = 0)

• let () = assert (sum [-5; 5] = 0)

• Make sure to test edge cases!

• Put these at the bottom of “warmup.ml”
• In the future, tests will go in other files

