
09 - Bash Scripting II
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 17th, 2016

Cornell University

Table of contents

1. Scripting Recap

2. Bash Basics

3. Conditonal Statements

4. Loops

2

Some Logistics

• All materials have been updated: > became >>>.
• Great job with HW1: only about 20 git mishaps I am aware of.
Out of 200, that's stellar!

• Today is more scripting. The first bit was in lec06.
• VIM will be coming back soon when we hit ssh...review lec06.
• Lecture demos 7 and 8 are up.

• lec07 is just a transcript of what we did at the end.
• lec08 is definitely worth taking a look at...sed is very powerful.

3

http://cs2043-sp16.github.io/slides/lecture06/lecture06.pdf

Scripting Recap

Review I

• A script just executes from the top to the bottom.
• Calling functions or using variables? They must be defined first.

• We are doing bash. Use the proper Shebang (#!/bin/bash).
• Declaring variables: cannot have spaces on side of equals
signs!

• Yes: FOO="value"
• No: FOO = "value"

• Dereference the value with the $ symbol.
>>> echo "$FOO"

• Note: for safety, always expand variables inside double quotes.
>>> echo 'Singles joining'"$FOO"' in doubles...'
• Single quotes are the one ring to rule them all.

• Things are read literally, including special symbols.
>>> echo '$USER'

• Refer to [3] for more.
5

Review II

• When you need to execute a command and store it in a
variable, you have two options:

• Surround it with backticks (`...cmd...`):
>>> VAR=`echo value`

• Surround it with $(...cmd...):
>>> VAR=$(echo value)

• Both still work, but you should prefer $(...) to backticks, as
backticks are deprecated.

• Not all commands work out as you expect. If you are not getting
the results you expect, print out the variable. A bad example:

#!/bin/bash
STATUS=$(echo "error string" > /dev/null)
echo "$STATUS"

6

Remember the Exit Codes

Recall from lec04 that commands have exit codes:

• Always execute:

>>> cmd1; cmd2 # exec cmd1 first, then cmd2

• Execute conditioned upon exit code:

>>> cmd1 && cmd2 # exec cmd2 only if cmd1 returned 0
>>> cmd1 || cmd2 # exec cmd2 only if cmd1 returned NOT 0

• Kind of backwards, in terms of what means continue for
and, but that was likely easier to implement since there is
only one 0 and many not 0's.

• Reference the exit code of the previous command with $?
7

Bash Basics

Arithmetic Expansion

• The shell will expand arithmetic expressions that are encased
in $((expr))

>>> echo $((2+3)) # standard addition
5
>>> echo $((2<3)) # less than: true is 1
1
>>> echo $((2>3)) # greater than: false is 0
0
>>> echo $((2/3)) # division: BASH IS ONLY INTEGERS!!!
0
>>> x=10 # set a variable
>>> echo $((x++)) # post increment: only for variables,
10 # does it AFTER...
>>> echo "$x" # ...but see it did increment
11
>>> echo $((++x)) # pre increment: only for variables,
12 # does it BEFORE....
>>> echo "$x" # ...only one increment took place
12
>>> sum=$(($x+10)) # use variables like normal,
>>> echo "$sum" # note: no quotes "$x" (it is a number)
22

9

Syntax Notes

• The Shebang does not need a space, but can have it if you
want. The following all work:

#!/bin/bash
#! /bin/bash
#! /bin/bash
#! /bin/bash

• Just needs whitespace, the #! is the magic. Just need:
• The #! to be the very first two characters, and
• the executable separated by whitespace on the same line.

• In bash, you use # to start a comment (line / end of line that
will not execute).

10

Passing Arguments to Scripts

• When you pass arguments to a bash script, you can access
them in a few different ways:

• $1, $2, ..., $10, $11: values of the first, second, etc arguments to
the script.

• If you do not have that many arguments, the variable value is just
empty.

• $0 is the name of the script.
• $# is the number of arguments (argc in C).
• $? is the exit code of the last program executed.

• You can have your script set this with exit <number>, read the
man page.

• $$ is the current process identification number (PID).
• $* expands $1 .. $n into one string.

• $* =⇒ "$1 $2 ... $n"
• $@ expands $1 .. $n into individual strings.

• $@ =⇒ "$1" "$2" ... "$n"

11

Simple Examples

#!/bin/bash
File: multiply.sh
echo $(($1 * $2)) # print out arg1 * arg2

./multiply.sh 5 10
#!/bin/bash
File: toLower.sh
tr '[A-Z]' '[a-z]' < $1 > $2 # read in arg1 and tr into arg2

./toLower.sh input_file output_file
#!/bin/bash
File: expansion.sh
note the use of single quotes to get a literal *
echo 'This is the *:'
for var in "$*"; do

echo "Var: $var"
done
echo 'This is the @:'
for var in "$@"; do

echo "Var: $var"
done

./expansion.sh hello there "billy bob" 12

Conditonal Statements

If Conditionals

• If statements are structured just as you would expect...

if [CONDITION_1]
then

statements
elif [CONDITION_2]
then

statements
else

statements
fi # fi necessary

The `then` is necessary...
use a semicolon to shorten code
if [CONDITION_1]; then

statements
elif [CONDITION_2]; then

statements
else

statements
fi # fi necessary

• Double brackets [[expr]] allow for more features e.g.
boolean operations. You generally should always use double
brackets.

if [[CONDITION_1]] || [[CONDITION_2]]; then
statements

elif [[CONDITION_3]] && [[CONDITION_4]]; then
statements

else
statements

fi # fi necessary

• Note that you need spaces before and after the brackets!!!
14

Test Expressions

• Bash has a special set of commands that allow various checks.
• Numerical comparisons (often used with variables):

• n1 -eq n2 tests if n1 = n2.
• n1 -ne n2 tests if n1 ̸= n2.
• n1 -lt n2 tests if n1 < n2.
• n1 -le n2 tests if n1 ≤ n2.
• n1 -gt n2 tests if n1 > n2.
• n1 -ge n2 tests if n1 ≥ n2.
• If either n1 or n2 are not a number, the test fails.

• String comparisons:
• s1 == s2 tests if s1 and s2 are identical.
• s1 != s2 tests if s1 and s2 are different.
• Make sure you have spaces!

• s1==s2 will fail...

15

Path Testing

• If path is a string indicating a path, we can test its validity and
attributes:

• -e path tests if path exists.
• -f path tests if path is a file.
• -d path tests if path is a directory.
• -r path tests if you have permission to read the file.
• -w path tests if you have write permission.
• -x path tests if you have execute permission.
• -s path tests if the file is empty.
• There are many of these, refer to [2] for more.

16

Loops

For Loops

for var in s1 s2 s3; do
cmd1
cmd2

done

for var in {000..22}; do
cmd1
cmd2

done

for ((i = 0; i < 10; i++)); do
cmd1
cmd2

done
18

While Loops

while [[condition]]; do
cmd1
cmd2

done

FILE="filename.txt"
while read line; do

cmd1
cmd2

done < "$FILE"

FILE="filename.txt"
for line in $(cat "$FILE"); do # NEVER DO THIS

cmd1
cmd2

done
19

More on Loops

• For whatever reason, bash is one of the few languages that
has an until loop:

#!/bin/bash
x=0
until [["$x" -eq 11]]; do

echo "$x"
((x++))

done

• The until loop is exactly how it sounds: execute the loop
body until the condition evaluates to true.

• So once x is 11, the condition is false.
• This means that only 0..10 actually get printed.
• Lets get some practice!
https://github.com/cs2043-sp16/lecture-demos/tree/master/lec09 20

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec09

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] TLDP.
Introduction to if.
http://tldp.org/LDP/Bash-Beginners-Guide/
html/sect_07_01.html#sect_07_01_01.

[3] H. to Geek.
What's the difference between single and double quotes
in the bash shell?
http://www.howtogeek.com/howto/29980/
whats-the-difference-between-single-and-double-quotes-in-the-bash-shell/.

21

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html#sect_07_01_01
http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html#sect_07_01_01
http://www.howtogeek.com/howto/29980/whats-the-difference-between-single-and-double-quotes-in-the-bash-shell/
http://www.howtogeek.com/howto/29980/whats-the-difference-between-single-and-double-quotes-in-the-bash-shell/

References II

22

	Scripting Recap
	Bash Basics
	Conditonal Statements
	Loops

