Verification in Coq

Nate Foster
Spring 2018
Review

Previously in 3110:
• Functional programming in Coq
• Logic in Coq
• Curry-Howard correspondence (proofs are programs)
• Induction in Coq

Today: Verification of...
• Functions
• Data structures
• Compilers
Coq for program verification

Coq program

Coq theorem

guidance with tactics

Verified OCaml program

Proof of theorem
Coq for program verification

Coq program

Coq theorem

guidance with *tactics*

Verified OCaml program

Proof of theorem
Coq for program verification

Coq program

Coq theorem

guidance with tactics

Verified OCaml program

Proof of theorem

This is the hard part
Theorems and test cases

- Do I have the right ones?
- Do I have enough?
- What am I missing?

... there are no great answers to these questions, only methodologies that help
VERIFICATION OF A FUNCTION

Prove that precondition implies postcondition
Factorial

- **Precondition**: \(n \geq 0 \)
- **Postcondition**: \(\text{fact} \ n = n! \)

- **Problem**: how to express \(!\) in Coq?
Factorial

Fixpoint fact (n:nat) :=
 match n with
 | 0 => 1
 | S k => n * (fact k)
end.

Theorem fact_correct : forall n,
 fact n = fact n.
Tail-recursive factorial

Fixpoint fact_tr_acc (n:nat) (acc:nat) :=
 match n with
 | 0 => acc
 | S k => fact_tr_acc k (n * acc)
end.

Definition fact_tr (n:nat) :=
 fact_tr_acc n 1.

Precondition: $n \geq 0$
Postcondition: $\text{fact}_\text{tr} n = \text{fact} n$

actually unnecessary because nat already implies it
Lemma helper : forall (n acc : nat),
 fact_tr_acc n acc = (fact n) * acc.
Proof.
 intros n.
 induction n as [| k IH]; intros acc.
 - simpl. ring.
 - simpl. rewrite IH. ring.
Qed.

Theorem fact_tr_correct : forall n:nat,
 fact_tr n = fact n.
Proof.
 intros n. unfold fact_tr. rewrite helper. ring.
Qed.
Verify factorial

Lemma helper : forall (n acc : nat),
 fact_tr_acc n acc = (fact n) * acc.
Proof.
 intros n.
 induction n as [| k IH]; intros acc.
 - simpl. ring.
 - simpl. rewrite IH. ring.
Qed.

Theorem fact_tr_correct : forall n:nat,
 fact_tr n = fact n.
Proof.
 intros n. unfold fact_tr. rewrite helper. ring.
Qed.

Generalized inductive hypothesis: not all variables introduced

Verify efficient impl equiv. to "obviously correct" inefficient impl.

unfold tactic instantiates definition
Extract verified factorial

Extract Inductive nat
 => int ["0" "succ"].
Extract Inlined Constant Init.Nat.mul
 => "(*)".
Extraction "fact.ml" fact_tr.

Coq nat becomes OCaml int

Coq * becomes OCaml *

Extract Coq to OCaml
Prove that equations hold for operations

VERIFICATION OF A DATA STRUCTURE
Stack

module type Stack = sig
 type 'a t
 val empty : 'a t
 val is_empty : 'a t -> bool
 val size : 'a t -> int
 val peek : 'a t -> 'a option
 val push : 'a -> 'a t -> 'a t
 val pop : 'a t -> 'a t option
end
Categories of operations

- **Creator**: creates value of type "from scratch" without any inputs of that type
- **Producer**: takes value of type as input and returns value of type as output
- **Observer**: takes value of type as input but does not return value of type as output
- **(Mutator)**: takes value of type as input and mutates the value
Stack

module type Stack = sig
 type 'a t
 val empty : 'a t
 val is_empty : 'a t -> bool
 val size : 'a t -> int
 val peek : 'a t -> 'a option
 val push : 'a -> 'a t -> 'a t
 val pop : 'a t -> 'a t option
end
Stack eqn. specification

• \texttt{is_empty empty} = true
• \texttt{is_empty (push _)} = false
• \texttt{peek empty} = \texttt{None}
• \texttt{peek (push x _)} = \texttt{Some x}
• \texttt{size empty} = 0
• \texttt{size (push _ s)} = 1 + \texttt{size s}
• \texttt{pop empty} = \texttt{None}
• \texttt{pop (push _ s)} = \texttt{Some s}
Equational specification

• aka *algebraic specification*
• Set of equations
• Describes interactions between:
 – observers and creators
 – observers and producers
 – producers and creators
 – producers and other producers
• Might not have equation for every possible interaction, because some might not be meaningful
Stack as list

Module MyStack.

Definition stack (A:Type) := list A.

Definition empty {A:Type} : stack A := nil.

Definition is_empty {A:Type} (s : stack A) : bool :=
 match s with
 | nil => true
 | _::_ => false
 end.
Stack as list

Definition push \{A: Type\} (x : A) (s : stack A) :
 stack A :=
 x :: s.

Definition peek \{A: Type\} (s : stack A) :
 option A :=
 match s with
 | nil => None
 | x :: _ => Some x
 end.
Stack as list

Definition pop \{A: \text{Type}\} (s : \text{stack } A) : \text{option } (\text{stack } A) :=
 \text{match } s \text{ with}
 \mid \text{nil} => \text{None}
 \mid _::xs => \text{Some } xs
 \text{end.}

Definition size \{A: \text{Type}\} (s : \text{stack } A) : \text{nat} :=
 \text{length } s.

End MyStack.
Verify stack as list

Theorem empty_is_empty :forall (A:Type),
 is_empty A empty = true.
Proof. auto. Qed.

Theorem push_not_empty :forall (A:Type) (x:A) (s : stack A),
 is_empty(push x s) = false.
Proof. auto. Qed.

Theorem peek_empty :forall (A:Type),
 peek A empty = None.
Proof. auto. Qed.

Theorem peek_push :forall (A:Type) (x:A) (s : stack A),
 peek(push x s) = Some x.
Proof. auto. Qed.
Verify stack as list

Theorem pop_empty : forall (A:Type),
 @pop A empty = None.
Proof. auto. Qed.

Theorem pop_push : forall (A:Type) (x:A) (s : stack A),
 pop(push x s) = Some s.
Proof. auto. Qed.

Theorem size_empty : forall (A:Type),
 @size A empty = 0.
Proof. auto. Qed.

Theorem size_push : forall (A:Type) (x:A) (s : stack A),
 size(push x s) = 1 + size s.
Proof. auto. Qed.
Extract verified stack

Extract Inductive bool => "bool" ["true" "false"].
Extract Inductive option => "option" ["Some" "None"].
Extract Inductive list => "list" ["[]" "(::)"].
Extract Inductive nat => int ["0" "succ"].

Extraction "stacks.ml" MyStack.

Coq bool, option, list, nat become OCaml equiv.
Prove that meaning is preserved

VERIFICATION OF A COMPILER
Expressions

Inductive expr : Type :=
 | Const : nat -> expr
 | Plus : expr -> expr -> expr.

Fixpoint eval_expr (e : expr) : nat :=
 match e with
 | Const n => n
 | Plus e1 e2 =>
 plus (eval_expr e1) (eval_expr e2)
 end.
Stack programs

Inductive instr : Type :=
 | PUSH : nat -> instr
 | ADD : instr.

Definition prog := list instr.

Definition stack := list nat.
Stack programs

Fixpoint eval_prog
 (p : prog) (s : stack)
 : option stack
:=

 match p,s with
 | (PUSH n)::p', s =>
 eval_prog p' (n::s)
 | ADD::p', x::y::s' =>
 eval_prog p' ((x+y)::s')
 | nil, s => Some s
 | _, _ => None
end.
Fixpoint compile (e : expr) : prog :=
 match e with
 | Const n => [PUSH n]
 | Plus e1 e2 =>
 compile e2 ++ compile e1 ++ [ADD]
 end.
Verify the compiler

Theorem compile_correct :
 forall (e:expr),
 eval_prog (compile e) []
 = Some [eval_expr e].

Proof in lecture code.
Extract verified compiler

Extract Inlined Constant app => "(@)".
Extraction "compiler.ml" compile.
Upcoming events

• [Tonight!] Prelim II
• [Wednesday or Thursday] A5 out
• [Friday] Yaron Minsky @ 5:30pm