Induction in Coq

Nate Foster
Spring 2018
Review

Previously in 3110:
• Functional programming in Coq
• Logic in Coq
• Curry-Howard correspondence (proofs are programs)

Today:
• Induction in Coq
REVIEW: INDUCTION ON NATURAL NUMBERS AND LISTS
Structure of inductive proof

Theorem:
for all natural numbers n, P(n).

Proof: by induction on n

Case: n = 0
Show: P(0)

Case: n = k+1
IH: P(k)
Show: P(k+1)

QED
Sum to \(n \)

```ocaml
define sum_to(n)
  if n = 0 then 0
  else n + sum_to(n-1)
end
```

Theorem:
for all natural numbers \(n \),

\[
\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}.
\]

Proof: by induction on \(n \)

\[P(n) \equiv (\text{sum_to}(n) = \frac{n \cdot (n+1)}{2}) \]
Base case

Case: \(n = 0 \)

Show:

\[P(0) \]
\[\equiv \text{sum}_\text{to} 0 = 0 \times (0+1) / 2 \]
\[\equiv 0 = 0 \times (0+1) / 2 \]
\[\equiv 0 = 0 \]

let rec sum_to n = if n=0 then 0 else n + sum_to (n-1)
Inductive case

Case: \(n = k+1 \)

IH: \(P(k) \equiv \text{sum}_{} \text{to } k = k \times (k+1) / 2 \)

Show:

\[
P(k+1) \\
\equiv \text{sum}_{} \text{to } (k+1) = (k+1) \times (k+2) / 2 \\
\equiv (k+1) + \text{sum}_{} \text{to } (k+1-1) = (k+1) \times (k+2) / 2 \\
\equiv (k+1) + \text{sum}_{} \text{to } k = (k+1) \times (k+2) / 2 \\
\equiv (k+1) + k \times (k+1) / 2 = (k+1) \times (k+2) / 2
\]

and that holds by algebraic reasoning

QED

let rec sum_to n =
if n=0 then 0
else n + sum_to (n-1)
Structure of inductive proof

Theorem: for all natural numbers \(n \), \(P(n) \).

Proof: by induction on \(n \)

Case: \(n = 0 \)
Show: \(P(0) \)

Case: \(n = k + 1 \)
IH: \(P(k) \)
Show: \(P(k+1) \)

QED
Structure of inductive proof

Theorem:
for all \(\textbf{lst} \), \(P(\textbf{lst}) \).

Proof: by induction on \(\textbf{lst} \)

Case: \(\textbf{lst} = [] \)
Show: \(P([]) \)

Case: \(\textbf{lst} = \textbf{h}::\textbf{t} \)
IH: \(P(\textbf{t}) \)
Show: \(P(\textbf{h}::\textbf{t}) \)

QED
Append nil

```ocaml
let rec (@) lst1 lst2 =
  match lst1 with
  | []     -> lst2
  | h::t   -> h ::: (t @ lst2)
```

Theorem:
for all lists lst, lst @ [] = lst.

Proof: by induction on lst

P(lst) ≡ lst @ [] = lst
Base case

Case: \(\text{lst} = [] \)

Show:

\[
P([])
\equiv [] @ [] = []
\equiv [] = []
\]
Inductive case

\[P(\text{lst}) \equiv \text{lst} @ [] = \text{lst} \]

Case: \(\text{lst} = \text{h} :: \text{t} \)

IH: \(P(\text{t}) \equiv \text{t} @ [] = \text{t} \)

Show:

\[P(\text{h} :: \text{t}) \]
\[\equiv (\text{h} :: \text{t}) @ [] = \text{h} :: \text{t} \]
\[\equiv \text{h} :: (\text{t} @ []) = \text{h} :: \text{t} \]
\[\equiv \text{h} :: \text{t} \quad = \text{h} :: \text{t} \]

QED
Append nil in Coq

Theorem app_nil :
 forall (A:Type) (lst : list A),
 lst ++ nil = lst.
Proof.
 intros A lst.
 induction lst as [| h t IH].
 - trivial.
 - simpl. rewrite -> IH. trivial.
Qed.
Append nil in Coq

Theorem app_nil :
 forall (A:Type) (lst : list A)
 lst ++ nil = lst.
Proof.
 intros A lst.
 induction lst as [| h t IH].
 - trivial.
 - simpl. rewrite -> IH. trivial.
Qed.

++ is append operator in Coq
base case: nothing to name
inductive case: name head, tail, and inductive hypothesis
rewrite -> tactic replaces LHS of equality with RHS
Append is associative

Theorem app_assoc :
 forall (A:Type) (l1 l2 l3 : list A),
 l1 ++ (l2 ++ l3) = (l1 ++ l2) ++ l3.

Proof.
 intros A l1 l2 l3.
 induction l1 as [| h t IH].
 - trivial.
 - simpl. rewrite -> IH. trivial.
Qed.
INDUCTION ON NATS
Inductive types

Induction works on inductive types, e.g.

```plaintext
Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A
```

Need an inductive definition of natural numbers...
Naturals

Inductive nat : Set :=
 | O : nat (* zero *)
 | S : nat -> nat (* succ *)

type nat = O | S of nat

0 is O
1 is S O
2 is S (S O)
3 is S (S (S O))

• unary representation
• Peano arithmetic
Theorem: for all \(n : \text{nat} \), \(P(n) \)

Proof: by induction on \(n \)

Case: \(n = 0 \)
Show: \(P(0) \)

Case: \(n = S\ k \)
IH: \(P(k) \)
Show: \(P(S \ k) \)

QED

Theorem: for all naturals \(n \), \(P(n) \)

Proof: by induction on \(n \)

Case: \(n = 0 \)
Show: \(P(0) \)

Case: \(n = k+1 \)
IH: \(P(k) \)
Show: \(P(k+1) \)

QED
Goal: redo this proof in Coq

let rec sum_to n =
 if n=0 then 0
 else n + sum_to (n-1)

Theorem:
for all natural numbers n,
 sum_to n = n * (n+1) / 2.

Proof: by induction on n
Defining sum_to

Fixpoint sum_to (n:nat) : nat :=
 if n = 0 then 0
 else n + sum_to (n-1).

Error: The term "n = 0" has type "Prop" which is not a (co-)inductive type.

Fixpoint sum_to (n:nat) : nat :=
 if n =? 0 then 0
 else n + sum_to (n-1).

Recursive definition of sum_to is ill-formed.

... Recursive call to sum_to has principal argument equal to "n - 1" instead of a subterm of "n".
No infinite loops

Fixpoint inf (x:nat) : nat :=
 inf x.

Recursive definition of inf is ill-formed.
...
Recursive call to inf has principal argument equal to "x" instead of a subterm of "x".
Why no infinite loops?

In OCaml:

```ocaml
# let rec inf x = inf x
val inf : 'a -> 'b = <fun>
```

By propositions-as-types, these are the same:

- 'a → 'b
- A ⇒ B

What if A=True, B=False?

Infinite loops prove False!
Defining sum_to

Fixpoint sum_to (n:nat) : nat :=
 match n with
 | 0 => 0
 | S k => n + sum_to k
end.

sum_to is defined

k is a subterm of n, because n = S k,
Theorem sum_sq_no_div :
 forall n : nat,
 2 * sum_to n = n * (n+1).
Proof.
 intros n.
 induction n as [| k IH].
 - trivial.
 - rewrite -> sum_helper.
 rewrite -> IH.
 ring.
Qed.
Helper theorem

Lemma sum_helper:
 forall n : nat,
 2 * sum_to (S n) = 2 * S n + 2 * sum_to n.
Proof.
 intros n. simpl. ring.
Qed.
Induction and recursion

• Intense similarity between inductive proofs and recursive functions on variants
 – In proofs: one case per constructor
 – In functions: one pattern-matching branch per constructor
 – In proofs: uses IH on "smaller" value
 – In functions: uses recursive call on "smaller" value

• Proofs = programs

• Inductive proofs = recursive programs
Upcoming events

• [next Tuesday] Prelim II
• [next Wednesday] A5 out
• [next Friday] Yaron Minsky talk