
Functional Programming in Coq

Nate Foster
Spring 2018

Review
Previously in 3110:
• Functional programming
• Modular programming
• Data structures
• Interpreters

Next unit of course: formal methods

Today:
• Proof assistants
• Functional programming in Coq
• Proofs about simple programs

Building reliable software

• Suppose you run a software company

• Suppose you’ve sunk 30+ person-years into developing
the “next big thing”:
– Boeing Dreamliner2 flight controller
– Autonomous vehicle control software for Tesla
– Gene therapy DNA tailoring algorithms
– Super-efficient green-energy power grid controller

• How do you avoid disasters?
– Turns out software endangers lives
– Turns out to be impossible to build software

Approaches to validation [lec 11]
• Social

– Code reviews
– Extreme/Pair programming

• Methodological
– Design patterns
– Test-driven development
– Version control
– Bug tracking

• Technological
– Static analysis

(“lint” tools, FindBugs, …)
– Fuzzers

• Mathematical
– Sound type systems
– “Formal” verification

More formal: eliminate
with certainty as many problems
as possible.

Less formal: Techniques may
miss problems in programs

All of these methods should be used!

Even the most formal can still
have holes:
• did you prove the right thing?
• do your assumptions match reality?

Verification

• In the 1970s, scaled to about tens of LOC
• Now, research projects scale to real software:
– CompCert: verified C compiler
– seL4: verified microkernel OS
– Ynot: verified DBMS, web services

• In another 40 years?

Automated theorem provers

• You give prover a theorem
• Prover searches for:
– a proof
– a counterexample
– or runs out of time

• e.g.,
– Z3: Microsoft started shipping with device driver

developer's kit in Windows 7
– ACL2: used to verify AMD chip compliance with IEEE

floating-point specification, as well as parts of the Java
virtual machine

Proof assistants

• You give assistant a theorem
• You and assistant cooperatively find proof
– Human guides the construction
– Machine does the low-level details

• e.g.,
– NuPRL [Prof. Constable, Cornell]: Formalization of

mathematics, distributed protocols, security, …
– Coq: CompCert, Ynot [Dean Morrisett, Cornell], …

COQ

Coq

• 1984: Coquand and Huet implement Coq based
on calculus of inductive constructions

• 1992: Coq ported to Caml

• Now implemented in OCaml

Thierry Coquand
1961 –

Coq for program verification

Coq
program

Coq
theorem

guidance with tactics

Proof of
theorem

Verified
OCaml

program

Coq's full system

Subset of Coq we'll use

Our goals

• Write basic functional programs in Coq
– no side effects, mutability, I/O

• Prove simple theorems in Coq
– CS 3110 programs: lists, options, trees
– CS 2800 mathematics: induction, logic

• Non goal: full verification of large programs
• Rather:

– help you understand what verification involves
– expose you to the future of functional programming
– solidify concepts about proof and induction by developing

machine-checked proofs

FUNCTIONAL PROGRAMMING IN
COQ

Language features

• Anonymous, higher-order functions
• Type inference and annotations
• Pairs

• Lists
• Pattern matching

Commands

• Let
• Check
• Print
• Compute
• Require Import
• Locate
• Inductive

THEOREMS ABOUT DAYS

A first theorem

Theorem wed_after_tue :
next_day tue = wed.

How we might word proof for a human to read:
• "It's obvious"
OR
• next_day tue evaluates to wed.
• So we need to show wed = wed.
• That follows from the reflexivity of =
OR
• In OCaml, we'd write a test case:
assert_equals wed (next_day tue)

A first theorem

Theorem wed_after_tue :
next_day tue = wed.

Proof.
auto.

Qed. auto is a tactic that
searches for a proof;

succeeds here because
theorem is so easy

Where is the proof?

Print wed_after_tue.
wed_after_tue = eq_refl

: next_day tuesday = wednesday

axiom: equality is reflexive
(and expressions may

compute on either side of it)

A first theorem

Theorem wed_after_tue :
next_day tue = wed.

Proof.
simpl. trivial.

Qed.

simpl is a tactic that
evaluates and simplifies

expressions

trivial is a tactic
that solves trivial

equalities

THEOREMS ABOUT DAYS

A second theorem

Theorem day_never_repeats :
forall d, next_day d <> d.

Proof. Let d be some day, and proceed by case analysis
on what d is.
• If d is sun, then next_day d is mon. sun <>
mon because they are different constructors.

• If d is mon, then next_day d is tue. mon <>
tue because they are different constructors.

• The other cases proceed in the same way.

Or in OCaml, we might write 7 test cases

A second theorem

Theorem day_never_repeats :
forall d, next_day d <> d.

Proof.
intros d. destruct d.

intros is a tactic
that introduces

variables into proof

destruct is a tactic
that does case analysis

A second theorem

Theorem day_never_repeats :
forall d, next_day d <> d.

Proof.
intros d. destruct d.
all: discriminate.

Qed.

all applies tactic to
all subgoals

Upcoming events

• [This week] Design Reviews

